欢迎光临散文网 会员登陆 & 注册

雅可比椭圆函数的傅里叶级数

2023-06-06 22:15 作者:艾琳娜的糖果屋  | 我要投稿

我们知道,雅可比椭圆函数具有双周期性,那么选定实周期就能将它展开为傅里叶级数

以下是比较容易得到的%0A%5Cmathrm%7Bsn%7D%5Cleft(%20u%2Ck%20%5Cright)%20%3D%5Cfrac%7B2%5Cpi%7D%7BKk%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bq%5E%7Bn%2B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B1-q%5E%7B2n%2B1%7D%7D%5Csin%20%5Cleft(%20%5Cleft(%202n%2B1%20%5Cright)%20%5Cfrac%7B%5Cpi%20u%7D%7B2K%7D%20%5Cright)%7D%5C%2C%5C%2C%20%20%20%0A%0A%5Cleft%7C%20%5C%2C%5C%2C%5Cmathrm%7BIm%7Du%20%5Cright%7C%3CK%5Cmathrm%7BIm%7D%5Cleft(%20%5Ctau%20%5Cright)%20%5C%2C%5C%2C%0A%5C%5C%0A%5C%2C%5C%2Cq%3De%5E%7B-%5Cpi%20%5Cfrac%7BK%5Cprime%7D%7BK%7D%7D%5C%2C%5C%2C%5Ctau%20%3Di%5Cfrac%7BK%5Cprime%7D%7BK%7D%0A%0A%0A%0A%0A

那么sn作为周期函数,它的平方也为周期函数而且周期是2K,那么如何计算它的傅里叶展开呢?whittaker的书中提到结果但是未给出证明,其他地方找了一圈也似乎并没有找到证明过程,于是自己构造了一个路径来计算它。

%0A%5Cmathrm%7Bsn%7D%5E2%5Cleft(%20z%2Ck%20%5Cright)%20%3D%5Cfrac%7Ba_0%7D%7B2%7D%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7Ba_n%5Ccos%20%5Cleft(%20%5Cfrac%7Bn%5Cpi%20z%7D%7BK%7D%20%5Cright)%7D%0A%0A%5C%5Ca_n%3D%5Cfrac%7B1%7D%7BK%7D%5Cint_0%5E%7B2K%7D%7B%5Cmathrm%7Bsn%7D%5E2%5Cleft(%20z%20%5Cright)%20e%5E%7Bi%5Cfrac%7Bn%5Cpi%20z%7D%7BK%7D%7D%5Cmathrm%7Bd%7Dz%7D%5C%2C%5C%2C%20%20%5C%5Ca_0%3D%5Cfrac%7B1%7D%7BK%7D%5Cint_0%5E%7B2K%7D%7B%5Cmathrm%7Bsn%7D%5E2%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%0A%0A%0A

a0是简单

%0Aa_0%3D%5Cfrac%7B1%7D%7BK%7D%5Cint_0%5E%7B2K%7D%7B%5Cmathrm%7Bsn%7D%5E2%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%3D%5Cfrac%7B1%7D%7BKk%5E2%7D%5Cint_0%5E%7B2K%7D%7B%5Cleft(%201-%5Cmathrm%7Bdn%7D%5E2z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%3D%5Cfrac%7B1%7D%7BKk%5E2%7D%5Cleft(%202K-E%5Cleft(%202K%20%5Cright)%20%5Cright)%20%3D%5Cfrac%7B2%7D%7Bk%5E2%7D%5Cleft(%201-%5Cfrac%7BE%7D%7BK%7D%20%5Cright)%20%0A%0A

对于an 我们选定路径%0A%5CGamma%20%3A0%5Crightarrow%202K%5Crightarrow%202K%2B2iK%5Cprime%5Crightarrow%202iK%5Cprime%5Crightarrow%200%0A%0A,(为什么不是平行四边形?)以小圆弧绕过边界上的极点%0AiK%5Cprime%EF%BC%8C%0A2K%2BiK%5Cprime%0A%0A%0A%0A,那么我们有:

%0A%5Cint_0%5E%7B2K%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%2B%5Cint_%7B2K%7D%5E%7B2K%2BiK%5Cprime-r%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%2B%5Cint_%7B%5Cgamma%20_2%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%2B%5Cint_%7B2K%2BiK%5Cprime%2Br%7D%5E%7B2K%2B2iK%5Cprime%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%5C%5C%2B%5Cint_%7B2K%2B2iK%7D%5E%7B2iK%5Cprime%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%2B%5Cint_%7B2iK%5Cprime%7D%5E%7BiK%5Cprime%2Br%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%2B%5Cint_%7B%5Cgamma%20_1%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%2B%5Cint_%7BiK%5Cprime-r%7D%5E0%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%3D0%0A%0A

对于实轴与平行于实轴的积分我们有:

%0A%5Cint_0%5E%7B2K%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%2B%5Cint_%7B2K%2B2iK%7D%5E%7B2iK%5Cprime%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%3D%5C%5C%5Cint_0%5E%7B2K%7D%7B%5Cmathrm%7Bsn%7D%5E2%5Cleft(%20z%20%5Cright)%20e%5E%7Bi%5Cfrac%7Bn%5Cpi%20z%7D%7BK%7D%7D%5Cmathrm%7Bd%7Dz%7D-%5Cint_0%5E%7B2K%7D%7B%5Cmathrm%7Bsn%7D%5E2%5Cleft(%20z%2B2iK%5Cprime%20%5Cright)%20e%5E%7Bi%5Cfrac%7Bn%5Cpi%7D%7BK%7D%5Cleft(%20z%2B2iK%5Cprime%20%5Cright)%7D%5Cmathrm%7Bd%7Dz%7D%3D%5Cleft(%201-q%5E%7B2n%7D%20%5Cright)%20%5Cint_0%5E%7B2K%7D%7B%5Cmathrm%7Bsn%7D%5E2%5Cleft(%20z%20%5Cright)%20e%5E%7Bi%5Cfrac%7Bn%5Cpi%20z%7D%7BK%7D%7D%5Cmathrm%7Bd%7Dz%7D%0A%0A

而对于极点处我们有展开:

%0A%5Cmathrm%7Bsn%7D%5E2%5Cleft(%20z%20%5Cright)%20e%5E%7Bi%5Cfrac%7Bn%5Cpi%20z%7D%7BK%7D%7D%3D%5Cfrac%7Bq%5En%7D%7Bk%5E2%5Cleft(%20z-iK%5Cprime%20%5Cright)%20%5E2%7D%2B%5Cfrac%7Bi%5Cpi%20nq%5En%7D%7Bk%5E2K%5Cleft(%20z-iK%5Cprime%20%5Cright)%7D%2BO%5Cleft(%201%20%5Cright)%20%5C%2C%5C%2C%20%20%5Cleft(%20z%5Crightarrow%20iK%5Cprime%20%5Cright)%20%0A%5C%5C%0A%5Cmathrm%7Bsn%7D%5E2%5Cleft(%20z%20%5Cright)%20e%5E%7Bi%5Cfrac%7Bn%5Cpi%20z%7D%7BK%7D%7D%3D%5Cfrac%7Bq%5En%7D%7Bk%5E2%5Cleft(%20z-2K-iK%5Cprime%20%5Cright)%20%5E2%7D%2B%5Cfrac%7Bi%5Cpi%20nq%5En%7D%7Bk%5E2K%5Cleft(%20z-2K-iK%5Cprime%20%5Cright)%7D%2BO%5Cleft(%201%20%5Cright)%20%5C%2C%5C%2C%20%20%20%5Cleft(%20z%5Crightarrow%202K%2BiK%5Cprime%20%5Cright)%20%0A

于是得到两个小圆弧的估计:

%0A%5Cint_%7B%5Cgamma%20_1%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%3D%5Cint_%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cleft(%20%5Cfrac%7Biq%5En%7D%7Bk%5E2re%5E%7Bi%5Ctheta%7D%7D-%5Cfrac%7Bn%5Cpi%20q%5En%7D%7Bk%5E2K%7D%2BO%5Cleft(%20r%20%5Cright)%20%5Cright)%20%5Cmathrm%7Bd%7D%5Ctheta%7D%3D%5Cfrac%7B2iq%5En%7D%7Bk%5E2r%7D%2B%5Cfrac%7Bn%5Cpi%20%5E2q%5En%7D%7Bk%5E2K%7D%2BO%5Cleft(%20r%20%5Cright)%20%0A%5C%5C%0A%5Cint_%7B%5Cgamma%20_2%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%3D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B-%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cleft(%20%5Cfrac%7Biq%5En%7D%7Bk%5E2re%5E%7Bi%5Ctheta%7D%7D-%5Cfrac%7Bn%5Cpi%20q%5En%7D%7Bk%5E2K%7D%2BO%5Cleft(%20r%20%5Cright)%20%5Cright)%20%5Cmathrm%7Bd%7D%5Ctheta%7D%3D-%5Cfrac%7B2iq%5En%7D%7Bk%5E2r%7D%2B%5Cfrac%7Bn%5Cpi%20%5E2q%5En%7D%7Bk%5E2K%7D%2BO%5Cleft(%20r%20%5Cright)%20%0A%5C%5C%0A%5Cint_%7B%5Cgamma%20_1%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%2B%5Cint_%7B%5Cgamma%20_2%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%5Crightarrow%20%5Cfrac%7B2n%5Cpi%20%5E2q%5En%7D%7Bk%5E2K%7D%5Cleft(%20r%5Crightarrow%200%20%5Cright)%20%0A%0A%0A

沿虚轴及平行于虚轴的积分:

%0A%5Cint_%7B2K%7D%5E%7B2K%2BiK%5Cprime-r%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%2B%5Cint_%7B2K%2BiK%5Cprime%2Br%7D%5E%7B2K%2B2iK%5Cprime%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%2B%5Cint_%7B2iK%5Cprime%7D%5E%7BiK%5Cprime%2Br%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%2B%5Cint_%7BiK%5Cprime-r%7D%5E0%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%5Crightarrow%20%5C%5C%5Cint_%7B2K%7D%5E%7B2K%2B2iK%5Cprime%7D%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%2B%5Cint_%7B2iK%5Cprime%7D%5E0%7Bf%5Cleft(%20z%20%5Cright)%20%5Cmathrm%7Bd%7Dz%7D%3D0%0A%0A

整理上述结果于是得到:

%0A%5Cmathrm%7Bsn%7D%5E2%5Cleft(%20z%2Ck%20%5Cright)%20%3D%5Cfrac%7B1%7D%7Bk%5E2%7D%5Cleft(%201-%5Cfrac%7BE%7D%7BK%7D%20%5Cright)%20-%5Cfrac%7B2%5Cpi%20%5E2%7D%7Bk%5E2K%5E2%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bnq%5En%7D%7B1-q%5E%7B2n%7D%7D%5Ccos%20%5Cleft(%20%5Cfrac%7Bn%5Cpi%20z%7D%7BK%7D%20%5Cright)%7D%0A%0A

当然可以考虑一下收敛范围,这更加有用。

%0A%5Cleft%7C%20%5Cfrac%7Bnq%5En%7D%7B1-q%5E%7B2n%7D%7D%5Ccos%20%5Cleft(%20%5Cfrac%7Bn%5Cpi%20z%7D%7BK%7D%20%5Cright)%20%5Cright%7C%3D%5Cleft%7C%20%5Cfrac%7Bne%5E%7B-n%5Cpi%20%5Cfrac%7BK%5Cprime%7D%7BK%7D%7D%7D%7B1-e%5E%7B-2n%5Cpi%20%5Cfrac%7BK%5Cprime%7D%7BK%7D%7D%7D%5Cfrac%7Be%5E%7Bi%5Cfrac%7Bn%5Cpi%20z%7D%7BK%7D%7D%2Be%5E%7B-i%5Cfrac%7Bn%5Cpi%20z%7D%7BK%7D%7D%7D%7B2%7D%20%5Cright%7C%5Cleqslant%5C%5C%20%5Cfrac%7Bne%5E%7B-n%5Cpi%20%5Cfrac%7BK%5Cprime%7D%7BK%7D%7D%7D%7B2%5Cleft(%201-e%5E%7B-2n%5Cpi%20%5Cfrac%7BK%5Cprime%7D%7BK%7D%7D%20%5Cright)%7D%5Cleft(%20e%5E%7B-%5Cmathrm%7BIm%7D%5Cleft(%20z%20%5Cright)%20%5Cfrac%7Bn%5Cpi%7D%7BK%7D%7D%2Be%5E%7B%5Cmathrm%7BIm%7D%5Cleft(%20z%20%5Cright)%20%5Cfrac%7Bn%5Cpi%7D%7BK%7D%7D%20%5Cright)%20%3DO%5Cleft(%20e%5E%7Bn%5Cpi%20%5Cleft(%20%5Cfrac%7B%5Cleft%7C%20%5Cmathrm%7BIm%7D%5Cleft(%20z%20%5Cright)%20%5Cright%7C%7D%7BK%7D-%5Cfrac%7BK%5Cprime%7D%7BK%7D%20%5Cright)%7D%20%5Cright)%20%5Cleft(%20n%5Crightarrow%20%5Cinfty%20%5Cright)%20%0A%0A

由此可要使得级数收敛,则必须满足%0A%5Cleft%7C%20%5Cmathrm%7BIm%7D%5Cleft(%20z%20%5Cright)%20%5Cright%7C%3CK%5Cmathrm%7BIm%7D%5Cleft(%20%5Ctau%20%5Cright)%20%0A%0A,由此可以推出其他雅可比椭圆函数的傅里叶展开,例如:

%0A%5Cmathrm%7Bns%7D%5E2%5Cleft(%20z%2Ck%20%5Cright)%20%3D1-%5Cfrac%7BE%7D%7BK%7D%2B%5Cfrac%7B%5Cpi%20%5E2%7D%7B4K%5E2%5Csin%20%5E2%5Cleft(%20%5Cfrac%7B%5Cpi%20z%7D%7B2K%7D%20%5Cright)%7D-%5Cfrac%7B2%5Cpi%20%5E2%7D%7BK%5E2%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bnq%5E%7B2n%7D%7D%7B1-q%5E%7B2n%7D%7D%5Ccos%20%5Cleft(%20%5Cfrac%7Bn%5Cpi%20z%7D%7BK%7D%20%5Cright)%7D%5C%2C%5C%2C%20%20%5Cleft%7C%20%5Cmathrm%7BIm%7D%5Cleft(%20z%20%5Cright)%20%5Cright%7C%3CK%5Cmathrm%7BIm%7D%5Cleft(%20%5Ctau%20%5Cright)%20%0A%0A

对这级数简单操作一下就得到了一些非常有用的结果:

%0A%5Cmathrm%7BRamanujan%7D%5C%5C%20P%5Cleft(%20q%5E2%20%5Cright)%20%3D1-24%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bnq%5E%7B2n%7D%7D%7B1-q%5E%7B2n%7D%7D%7D%3D%5Cleft(%20%5Cfrac%7B2K%7D%7B%5Cpi%7D%20%5Cright)%20%5E2%5Cleft(%20k%5E2%2B3%5Cfrac%7BE%7D%7BK%7D-2%20%5Cright)%20%0A%0A%5C%5CQ%5Cleft(%20q%5E2%20%5Cright)%20%3D1%2B240%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bn%5E3q%5E%7B2n%7D%7D%7B1-q%5E%7B2n%7D%7D%7D%3D%5Cleft(%20%5Cfrac%7B2K%7D%7B%5Cpi%7D%20%5Cright)%20%5E4%5Cleft(%20k%5E4-k%5E2%2B1%20%5Cright)%20%5C%2C%5C%2C%0A%5C%5C%0AR%5Cleft(%20q%5E2%20%5Cright)%20%3D1-504%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bn%5E5q%5E%7B2n%7D%7D%7B1-q%5E%7B2n%7D%7D%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20%5Cfrac%7B2K%7D%7B%5Cpi%7D%20%5Cright)%20%5E6%5Cleft(%201%2Bk%5E2%20%5Cright)%20%5Cleft(%202-k%5E2%20%5Cright)%20%5Cleft(%201-2k%5E2%20%5Cright)%20%0A%0A%0A%0A

不难得到:

%0A%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bn%7D%7Be%5E%7Bn%5Cpi%7D-1%7D%7D%3D%5Cfrac%7B1%7D%7B24%7D%2B%5Cfrac%7B%5CGamma%20%5E4%5Cleft(%20%5Cfrac%7B1%7D%7B4%7D%20%5Cright)%7D%7B64%5Cpi%20%5E3%7D-%5Cfrac%7B1%7D%7B4%5Cpi%7D%0A%5C%5C%0A%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bn%5E3%7D%7Be%5E%7B%5Csqrt%7B2%7Dn%5Cpi%7D-1%7D%7D%3D%5Cfrac%7B%5CGamma%20%5E4%5Cleft(%20%5Cfrac%7B1%7D%7B8%7D%20%5Cright)%20%5CGamma%20%5E4%5Cleft(%20%5Cfrac%7B3%7D%7B8%7D%20%5Cright)%7D%7B6144%5Cpi%20%5E6%7D-%5Cfrac%7B1%7D%7B240%7D%0A%5C%5C%0A%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bn%5E5%7D%7Be%5E%7B%5Cfrac%7B2%7D%7B%5Csqrt%7B3%7D%7Dn%5Cpi%7D-1%7D%7D%3D%5Cfrac%7B1%7D%7B504%7D%2B%5Cfrac%7B891%5CGamma%20%5E%7B18%7D%5Cleft(%20%5Cfrac%7B1%7D%7B3%7D%20%5Cright)%7D%7B917504%5Cpi%20%5E%7B12%7D%7D%0A%0A





雅可比椭圆函数的傅里叶级数的评论 (共 条)

分享到微博请遵守国家法律