欢迎光临散文网 会员登陆 & 注册

陶分第十五天(有理数)

2023-08-08 22:39 作者:Delta意为转化  | 我要投稿




嗯嗯。。。


有理数的构造

 我们首先通过已经拥有的数系来构造新的数系,在这里,就是用整数,通过经验中的形式除法构造出有理数。也借此,我们定义并验证有理数的相等满足相等公理。

 接着我们定义出已经有的加法,乘法,和负运算,并进行验证其满足替换公理。

 同时,我们构造一个同构,让原本的数系与新的数系一一对应。我们还定义了一种新的概念:倒数,用来规避循环定义来得到除法。

4.2.1,嗯,先假设再验证,拥有一套好的验证体系比拥有一套好的构造体系要通用不少(赞赏)

4.2.2,每个运算都应该满足替换公理,但如果一个新的运算是由已经验证了的运算定义的,那么就不需要了。这一点可以在上一节和A.7找到描述,以及在上一章找到许多例子。

有理数的代数定律

4.2.3,我们接着得到了域的定理。证明依旧简单重复。

 我们还取得了实际商的定义,并用它取代了形式商。接着定义减法和正负性,来得到序的描述。

4.2.4,分类呗。

有理数的序

4.2.5,4.2.6,在证明之前也许可以先证明几个结论。(1)对于有理数x,有-x=(-1)x。(2)负数加负数还是负数。(3)负数乘负数是正数。这几条的证明会用到整数的性质,包括习题4.1.3。




好水啊今天。emmmmmmm,摸么,就要开摸了么……鱼,好想,摸鱼。。。


破手机跟不上时代哩。。。疯狂闪退。

陶分第十五天(有理数)的评论 (共 条)

分享到微博请遵守国家法律