欢迎光临散文网 会员登陆 & 注册

复习笔记Day115

2023-03-08 01:04 作者:间宫_卓司  | 我要投稿

整套考卷打上去实在太累了,而且有的题目确实没啥意思,所以我还是恢复到之前只写一些个人认为比较有意思的题目上去的状态

115.1 [苏州大学2023] n阶复方阵A称为对合矩阵,若A%5E2%3DE_n

(1)证明:任意一个对合矩阵都可以相似对角化

(2)证明:两两可交换的n阶对合矩阵最多有2%5En

(1)记f%5Cleft(%20%5Clambda%20%5Cright)%20%3D%5Clambda%20%5E2-1,那么因为f%5Cleft(%20%5Clambda%20%5Cright)%20%3D%5Cleft(%20%5Clambda%20-1%20%5Cright)%20%5Cleft(%20%5Clambda%20%2B1%20%5Cright)%20只有单根,故A的极小多项式也只有单根,从而A可以相似对角化

(2)容易发现%5Cleft%5C%7B%20%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%20c_1%2Cc_2%2C%5Ccdots%20%2Cc_n%20%5Cright%5C%7D%20%3Ac_i%3D%5Cpm%201%2Ci%3D1%2C2%2C%5Ccdots%20%2Cn%20%5Cright%5C%7D%20是一个满足条件的集合,并且不能再向里面添加元素了,下面来严格证明一下

B是两两可交换n阶对合矩阵构成的集合中元素最多的集合之一

C为两两可交换n阶对合矩阵构成的集合,那么C%5Ccup%20%5Cleft%5C%7B%20E_n%20%5Cright%5C%7D%20也是两两可交换n阶对合矩阵构成的集合,所以E_n%5Cin%20B

其次,B中的元素的个数和P%5E%7B-1%7DBP%3D%5Cleft%5C%7B%20P%5E%7B-1%7DAP%3AA%5Cin%20B%20%5Cright%5C%7D%20中的元素的个数是一样的,因为A可对角化且特征值仅为%5Cpm%201,所以不妨设%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%201%2C1%2C%5Ccdots%20%2C1%2C-1%2C%5Ccdots%20%2C-1%20%5Cright%5C%7D%20%5Cin%20B,其中1的个数为x个,-1的个数为y

n%3D1时,结论显然

假设当k%3C%20n时结论成立,即两两可交换的k阶对合矩阵最多有2%5Ek个,那么任取A%3D(a_%7Bij%7D)_%7Bn%5Ctimes%20n%7D,有

%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%201%2C1%2C%5Ccdots%20%2C1%2C-1%2C%5Ccdots%20%2C-1%20%5Cright%5C%7D%20A%3DA%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%201%2C1%2C%5Ccdots%20%2C1%2C-1%2C%5Ccdots%20%2C-1%20%5Cright%5C%7D%20

A%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09A_2%5C%5C%0A%09A_3%26%09%09A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20,其中A_1x%5Ctimes%20x阶矩阵,A_4y%5Ctimes%20y阶矩阵,那么

%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09E_x%26%09%09%5C%5C%0A%09%26%09%09-E_y%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09A_2%5C%5C%0A%09A_3%26%09%09A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09A_2%5C%5C%0A%09A_3%26%09%09A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09E_x%26%09%09%5C%5C%0A%09%26%09%09-E_y%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20

化简,得

%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09A_2%5C%5C%0A%09-A_3%26%09%09-A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09-A_2%5C%5C%0A%09A_3%26%09%09-A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20

从而A_2%3DA_3%3D0,即B中矩阵只能有A%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09%5C%5C%0A%09%26%09%09A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20的形式,又因为A%5E2%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09%5C%5C%0A%09%26%09%09A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_%7B1%7D%5E%7B2%7D%26%09%09%5C%5C%0A%09%26%09%09A_%7B4%7D%5E%7B2%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%3DE_n,所以A_1%2CA_4也是对合矩阵,依归纳假设,这样的A_1最多有2%5Ex个,这样的A_4最多有2%5Ey个,合起来这样的A一共有2%5En个,又因为E_x-E_y也包含在其中,所以B中的元素最多有2%5En

115.2 [南开大学2023]设AA%5Cin%20%5Cmathbb%7BR%7D%20%5E%7Bn%5Ctimes%20n%7D是正定矩阵,%5Cbeta%20%5Cin%20%5Cmathbb%7BR%7D%20%5En%2Cc%5Cin%20%5Cmathbb%7BR%7D%20。如果存在x%5Cin%20%5Cmathbb%7BR%7D%20%5En,使得x%5ETAx%2B2%5Cbeta%20%5ETx%2Bc%3D0,证明:%5Cbeta%20%5ETA%5E%7B-1%7D%5Cbeta%20%5Cge%20c

如果n%3D1,那么这个结论就是熟悉的一元二次方程的判别式,现在先来回忆一下这个判别式是怎么推导出来的

%5Cbegin%7Baligned%7D%0A%09%26ax%5E2%2B2bx%2Bc%5C%5C%0A%09%26%3Da%5Cleft(%20x%2B%5Cfrac%7Bb%7D%7Ba%7D%20%5Cright)%20%5E2-%5Cfrac%7Bb%7D%7Ba%7D%5E2%5C%5C%0A%09%26%3Da%5Cleft(%20x%2B%5Cfrac%7Bb%7D%7Ba%7D%20%5Cright)%20%5E2%2Bc-%5Cfrac%7Bb%5E2%7D%7Ba%7D%5C%5C%0A%5Cend%7Baligned%7D

所以只能有c-%5Cfrac%7Bb%5E2%7D%7Ba%7D%3C0

根据要证明的结论,合理地猜想,对于一般的情况,有下式成立

%5Cbegin%7Baligned%7D%0A%09%26x%5ETAx%2B2%5Cbeta%20%5ETx%2Bc%5C%5C%0A%09%26%3D%5Cleft(%20x%5ET%2B%5Cbeta%20%5ETA%5E%7B-1%7D%20%5Cright)%20A%5Cleft(%20x%2BA%5E%7B-1%7D%5Cbeta%20%5Cright)%20%2Bc-%5Cbeta%20%5ETA%5E%7B-1%7D%5Cbeta%20%5C%0A%5Cend%7Baligned%7D

下面来验证一下

%5Cbegin%7Baligned%7D%0A%09%26%5Cleft(%20x%5ET%2B%5Cbeta%20%5ETA%5E%7B-1%7D%20%5Cright)%20A%5Cleft(%20x%2BA%5E%7B-1%7D%5Cbeta%20%5Cright)%20%2Bc-%5Cbeta%20%5ETA%5E%7B-1%7D%5Cbeta%5C%5C%0A%09%26%3Dx%5ETAx%2Bx%5ET%5Cbeta%20%2B%5Cbeta%20%5ETx%2B%5Cbeta%20%5ETA%5E%7B-1%7D%5Cbeta%20%2Bc-%5Cbeta%20%5ETA%5E%7B-1%7D%5Cbeta%5C%5C%0A%09%26%3Dx%5ETAx%2B2%5Cbeta%20%5ETx%2Bc%5C%5C%0A%5Cend%7Baligned%7D

所以这确实是成立的,故

%5Cleft(%20x%5ET%2B%5Cbeta%20%5ETA%5E%7B-1%7D%20%5Cright)%20A%5Cleft(%20x%2B%5Cbeta%20A%5E%7B-1%7D%20%5Cright)%20%3D%5Cbeta%20%5ETA%5E%7B-1%7D%5Cbeta%20-c%5Cge%200

结论得证

115.3 [南开大学2023]是否存在矩阵A%5Cin%20%5Cmathbb%7BQ%7D%20%5E%7B2%5Ctimes%202%7D,使得A%5E6%3DE%2CA%5E3%5Cne%20E%2CA%5E2%5Cne%20E,且A中所有元素之和为2023?如果存在,请给出具体的例子,如果不存在,请说明理由

A%5E3%3DB,则B是对合矩阵,B可对角化且其只能以1-1为特征值,又因为B%5Cne%20E,所以其相似于%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%201%2C-1%20%5Cright%5C%7D%20%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%20-1%2C-1%20%5Cright%5C%7D%20

若其相似于%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%201%2C-1%20%5Cright%5C%7D%20,则因为方程%5Clambda%20%5E3%3D1的解为%5Clambda%20%3De%5E%7B%5Cfrac%7B2%5Cpi%20i%7D%7B3%7D%7D%2Ce%5E%7B%5Cfrac%7B4%5Cpi%20i%7D%7B3%7D%7D%2C1%5Clambda%20%5E3%2B1%3D0的解为%5Clambda%20%3De%5E%7B%5Cfrac%7B%5Cpi%20i%7D%7B3%7D%7D%2C-1%2Ce%5E%7B%5Cfrac%7B5%5Cpi%20i%7D%7B3%7D%7D,所以A%5Clambda%20%3D%5Cleft%5C%7B%20e%5E%7B%5Cfrac%7B2%5Cpi%20i%7D%7B3%7D%7D%2Ce%5E%7B%5Cfrac%7B4%5Cpi%20i%7D%7B3%7D%7D%2C1%20%5Cright%5C%7D%20中的一个元素为一个特征值,以%5Cleft%5C%7B%20e%5E%7B%5Cfrac%7B%5Cpi%20i%7D%7B3%7D%7D%2C-1%2Ce%5E%7B%5Cfrac%7B5%5Cpi%20i%7D%7B3%7D%7D%20%5Cright%5C%7D%20中的一个元素为另一个特征值,因为A是有理数域上的矩阵,所以其复根只能是共轭的,所以A的特征值只能是%5Clambda%3D%5Cpm1,但是此时A%5E2%3DE,矛盾

同理可知,B相似于%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%20-1%2C-1%20%5Cright%5C%7D%20时,A的特征值只能为%5Clambda%20_1%3De%5E%7B%5Cfrac%7B%5Cpi%20i%7D%7B3%7D%7D%2C%5Clambda%20_2%3De%5E%7B%5Cfrac%7B5%5Cpi%20i%7D%7B3%7D%7D

此时,A相似于%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%090%26%09%09-1%5C%5C%0A%091%26%09%091%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20

草稿纸上算的时候以为做出来了,结果写到这里发现不会了,不过整题删了又怪可惜的,等想出来了再补上吧,有做出来的大哥教教我吧···


复习笔记Day115的评论 (共 条)

分享到微博请遵守国家法律