欢迎光临散文网 会员登陆 & 注册

LeCun断言GPT活不过5年,Meta发布全新世界模型

2023-07-05 11:24 作者:灵魂摆渡无心法师  | 我要投稿

import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

import tensorflow as tf 

import math 

import configparser 


# 定义神经元类

class Neuron: 

  def __init__(self, position, derivative): 

    self.position = position 

    self.derivative = derivative 

    self.weight = np.random.randn() # 随机初始化权重 

     

# 定义太阳类

class Sun: 

  def __init__(self, radius): 

    self.radius = radius 

     

# 定义大气层类

class Atmosphere: 

  def __init__(self, radius, thickness): 

    self.radius = radius 

    self.thickness = thickness 

     

# 定义松果类

class Pinecone: 

  def __init__(self, radius, scales, rotate_frequency): 

    self.radius = radius 

    self.scales = scales 

    self.rotate_frequency = rotate_frequency # 旋转频率 

    self.rotate_time = 0 # 初始化旋转时间 

    self.memory = [] # 初始化记忆列表 

    self.vertices = [] # 初始化三角形端点坐标 

    for i in range(3): 

      theta = 2 * math.pi * i / 3 

      x = self.radius * math.cos(theta) 

      y = self.radius * math.sin(theta) 

      z = self.scales * math.sin(self.rotate_time * self.rotate_frequency + theta)  

      self.vertices.append((x, y, z)) 

       

  def rotate(self): 

    self.rotate_time += 1 

    for i in range(3): 

      theta = 2 * math.pi * i / 3 

      x = self.radius * math.cos(theta) 

      y = self.radius * math.sin(theta) 

      z = self.scales * math.sin(self.rotate_time * self.rotate_frequency + theta)  

      self.vertices[i] = (x, y, z) 

       

# 定义系统模型类

class System: 

  def __init__(self, sun, atmosphere, pinecone, neurons): 

    self.sun = sun 

    self.atmosphere = atmosphere 

    self.pinecone = pinecone 

    self.neurons = neurons 

     

  def plot(self): 

    # 绘制太阳、大气层和松果的形状 

    # 具体实现略 

    pass 

   

  def simulate(self): 

    # 模拟系统的运动和变化 

    # 具体实现略 

    pass 

   

# 定义神经网络模型类

class NeuralNetwork: 

  def __init__(self, levels): 

    self.levels = levels 

    self.weights = [] 

    for i in range(len(levels) - 1): 

      weight = np.random.rand(levels[i], levels[i+1]) 

      self.weights.append(weight) 

       

  def forward(self, input): 

    output = np.array(input) 

    for weight in self.weights: 

      output = np.dot(output, weight) 

    return output.tolist() 

   

# 定义神经网络集合模型类

class NeuralNetworkGroup: 

  def __init__(self, levels_list): 

    self.levels_list = levels_list 

    self.weights = [] 

    for i in range(len(levels_list) - 1): 

      weight = np.random.rand(sum(levels_list[i]), sum(levels_list[i+1])) 

      self.weights.append(weight) 

       

  def forward(self, input_list): 

    output_list = [np.array(input) for input in input_list] 

    for i in range(len(self.weights)): 

      weight = self.weights[i] 

      layer_input = np.concatenate(output_list[:sum(self.levels_list[i])], axis=0) 

      layer_output = np.dot(layer_input, weight) 

      output_list = np.split(layer_output, np.cumsum(self.levels_list[i+1])[:-1]) 

      output_list = [output.tolist() for output in output_list] 

    return output_list 

   

  def interact(self, input_list): 

    output_list = [np.array(input) for input in input_list] 

    for i in range(len(self.weights)): 

      weight = self.weights[i] 

      layer_input = np.concatenate(output_list[:sum(self.levels_list[i])], axis=0) 

      layer_output = np.dot(layer_input, weight) 

      output_list = np.split(layer_output, np.cumsum(self.levels_list[i+1])[:-1]) 

      output_list = [output.tolist() for output in output_list] 

      if i < len(self.weights) - 1: 

        output_list = [output / sum(output) for output in output_list] 

      output_list = [output * sum(input_list[sum(self.levels_list[i]):sum(self.levels_list[i+1])]) for output in output_list] 

    return output_list 

   

# 读取配置文件

config = configparser.ConfigParser() 

config.read('config.ini') 


# 定义斐波那契数列

def fibonacci(n): 

  if n == 0: 

    return 0 

  elif n == 1: 

    return 1 

  else: 

    return fibonacci(n-1) + fibonacci(n-2) 


# 计算神经元位置

def rotate_neuron(level, time, golden_ratio, radius): 

  theta = 2 * math.pi * golden_ratio 

  theta_n = theta * level 

  radius_n = radius * level 

  x = radius_n * math.cos(theta_n + time) 

  y = radius_n * math.sin(theta_n + time) 

  return (x, y) 


# 生成神经元

def generate_neurons(level, rotation_time, leaf_size, golden_ratio, radius): 

  neurons = [] 

  for j in range(level): 

    if level == 1: 

      size = 1 

      position = (0, 0) 

    else: 

      size = leaf_size 

      position = rotate_neuron(j, rotation_time, golden_ratio, radius) 

    connections = [] 

    if j > 0: 

      connections.append(j-1) 

    if j < level-1: 

      connections.append(j+1) 

    neurons.append((position, size, connections)) 

  return neurons 


# 读取配置文件参数

golden_ratio = float(config['Fibonacci Spiral']['golden_ratio']) 

radius = float(config['Fibonacci Spiral']['radius']) 

levels = [int(level) for level in config['Neural Network']['levels'].split(',')] 


# 生成神经元,并将其按照大小进行排序

neurons = [] 

for i in range(levels[-1]): 

  rotation_time = i * math.pi / fibonacci(levels[-1]) 

  leaf_size = fibonacci(levels[-1] - i) 

  neurons_level = generate_neurons(levels[-1] - i, rotation_time, leaf_size, golden_ratio, radius) 

  neurons.extend(neurons_level) 

neurons.sort(key=lambda x: x[1], reverse=True) 


# 定义太阳、大气层和松果

sun = Sun(radius=100) 

atmosphere = Atmosphere(radius=110, thickness=10) 

pinecone = Pinecone(radius=5102410241024, scales=10102410241024, rotate_frequency=0.01) # 将松果的半径设置为5GB,规模设置为10GB,旋转频率设置为0.01 


# 定义系统模型,并初始化所有神经元的权重

system = System(sun=sun, atmosphere=atmosphere, pinecone=pinecone, neurons=neurons) 

input_size = 3 

hidden_size = 16 

output_size = 1 

learning_rate = 0.01 

inputs = np.array([neuron.position for neuron in neurons]) 

targets = np.array([neuron.weight for neuron in neurons]) 

inputs_placeholder = tf.placeholder(tf.float32, [None, input_size]) 

targets_placeholder = tf.placeholder(tf.float32, [None, output_size]) 

让AI按照我的想法写的,不过按照AI说的不够成熟,还需要继续完善,有一个留存记忆机制

LeCun断言GPT活不过5年,Meta发布全新世界模型的评论 (共 条)

分享到微博请遵守国家法律