欢迎光临散文网 会员登陆 & 注册

2023浙江大学强基数学逐题解析(3)

2023-06-20 00:12 作者:CHN_ZCY  | 我要投稿

封面:空堀日奈(《蔚蓝档案》)


5. 已知x%2Cy%20%5Cin%20%5Cmathbb%7BN%7D%5E*,且x%2Cy%20%5Cin%20%5Cleft%5B1%2C1897%5Cright%5D,且%5Clfloor%5Cfrac%7Bx%5E2%7D%7By%7D%5Crfloor%2B1x的倍数,则整数对%5Cleft(x%2Cy%5Cright)的个数为

A. 2898

B. 3793

C. 4686

D. 5133

答案  B

解析  

由于x%5Cmid%20%5Clfloor%5Cfrac%7Bx%5E2%7D%7By%7D%5Crfloor%20%2B1,所以x%5Cmid%20y%5Cleft(%5Clfloor%5Cfrac%7Bx%5E2%7D%7By%7D%5Crfloor%20%2B1%5Cright).

x%5E2%3Dy%5Cleft(%5Clfloor%5Cfrac%7Bx%5E2%7D%7By%7D%5Crfloor%2B%5Cleft%5C%7B%5Cfrac%7Bx%5E2%7D%7By%7D%5Cright%5C%7D%5Cright)x%5Cmid%20x%5E2,所以x%5Cmid%20y%5Cleft(%5Clfloor%5Cfrac%7Bx%5E2%7D%7By%7D%5Crfloor%2B%5Cleft%5C%7B%5Cfrac%7Bx%5E2%7D%7By%7D%5Cright%5C%7D%5Cright).

所以x%5Cmid%20y%5Cleft(1-%5Cleft%5C%7B%5Cfrac%7Bx%5E2%7D%7By%7D%5Cright%5C%7D%5Cright).

由于y%5Cleft(1-%5Cleft%5C%7B%5Cfrac%7Bx%5E2%7D%7By%7D%5Cright%5C%7D%5Cright)%3E0,所以x%5Cleq%20y%5Cleft(1-%5Cleft%5C%7B%5Cfrac%7Bx%5E2%7D%7By%7D%5Cright%5C%7D%5Cright)%5Cleq%20y.

(1) 若x%3D1y%3D1%2C2%2C3%2C%5Ccdots%2C1897均符合题意,得到1897个符合题意的%5Cleft(x%2Cy%5Cright).

(2) 若x%5Cgeq2

%5Clfloor%5Cfrac%7Bx%5E2%7D%7By%7D%5Crfloor%2B1%5Cleq%20%5Cfrac%7Bx%5E2%7D%7By%7D%2B1%20%5Cleq%20x%2B1%20%3C2x

由于x%5Cmid%20%5Clfloor%5Cfrac%7Bx%5E2%7D%7By%7D%5Crfloor%20%2B1,所以%5Clfloor%5Cfrac%7Bx%5E2%7D%7By%7D%5Crfloor%2B1%3Dx.

%5Clfloor%5Cfrac%7Bx%5E2%7D%7By%7D%5Crfloor%3Dx-1%5CLeftrightarrow%20x-1%5Cleq%5Cfrac%7Bx%5E2%7D%7By%7D%3Cx%20%5CLeftrightarrow%20x%3Cy%5Cleq%5Cfrac%7Bx%5E2%7D%7Bx-1%7D

x%3D2时,上式即2%3Cy%5Cleq%204,即y%3D3%E6%88%964,得到2个符合题意的%5Cleft(x%2Cy%5Cright).

x%5Cgeq3时,

x%2B1%3C%5Cfrac%7Bx%5E2%7D%7Bx-1%7D%3Dx%2B1%2B%5Cfrac%7B1%7D%7Bx-1%7D%3Cx%2B2

所以

x%3Cy%5Cleq%5Cfrac%7Bx%5E2%7D%7Bx-1%7D%20%5CLeftrightarrow%20x%3Cy%5Cleq%20x%2B1%20%5CLeftrightarrow%20y%3Dx%2B1

得到1894个符合题意的%5Cleft(x%2Cy%5Cright).

综上,整数对%5Cleft(x%2Cy%5Cright)的个数为

1897%2B2%2B1894%3D3793

故选:B.

6. 四边形ABCD外切于圆O,过O的直线交AB%2CCD%2CAC%2CBDK%2CL%2CM%2CN,且%5Cangle%20BKL%3D%5Cangle%20CLKAM%3D1%2CMC%3D2%2CBN%3D3,则ND%3D___________.

答案  6

解析  

连结OBOC.

%5Cbegin%7Baligned%7D%0A%5Cangle%20OCL%2B%5Cangle%20OBK%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%5Cangle%20BCD%20%2B%20%5Cangle%20ABC%5Cright)%5C%5C%26%3D%5Cfrac%7B1%7D%7B2%7D%20%5Cleft(2%5Cpi-%5Cangle%20BKL%20-%20%5Cangle%20CLK%5Cright)%5C%5C%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(2%5Cpi-2%5Cangle%20BKL%5Cright)%5C%5C%26%3D%5Cpi-%5Cangle%20BKL%5C%5C%26%3D%5Cangle%20OBK%2B%5Cangle%20BOK%0A%5Cend%7Baligned%7D

%5Cangle%20OCL%3D%5Cangle%20BOK.

由于%5Cangle%20CLK%3D%5Cangle%20BKL,所以%5Ctriangle%20OCL%20%5Cbacksim%20%5Ctriangle%20BOK.

所以%5Cfrac%7BCL%7D%7BOK%7D%3D%5Cfrac%7BOL%7D%7BBK%7D,即CL%5Ccdot%20BK%3DOL%5Ccdot%20OK.

同理DL%5Ccdot%20AK%3DOL%5Ccdot%20OK.

所以CL%5Ccdot%20BK%3DDL%5Ccdot%20AK.

由正弦定理

%5Cfrac%7BMC%7D%7BCL%7D%3D%5Cfrac%7B%5Csin%20%5Cangle%20CLK%7D%7B%5Csin%20%5Cangle%20CML%7D%3D%5Cfrac%7B%5Csin%5Cangle%20AKL%7D%7B%5Csin%5Cangle%20AMK%7D%3D%5Cfrac%7BAM%7D%7BAK%7D

%5Cfrac%7BBN%7D%7BBK%7D%3D%5Cfrac%7B%5Csin%20%5Cangle%20BKL%7D%7B%5Csin%20%5Cangle%20BNK%7D%3D%5Cfrac%7B%5Csin%5Cangle%20DLK%7D%7B%5Csin%5Cangle%20DNL%7D%3D%5Cfrac%7BND%7D%7BDL%7D

所以MC%5Ccdot%20BN%3DAM%5Ccdot%20ND.

所以ND%3D%5Cfrac%7BMC%5Ccdot%20BN%7D%7BAM%7D%3D6.

7. 已知正整数m满足:对任意等差数列%5Cleft%5C%7Ba_n%5Cright%5C%7D,若a_1%2B2a_2%2B3a_3%2B%5Ccdots%2Bma_m为有理数,则数列%5Cleft%5C%7Ba_n%5Cright%5C%7D中至少有一个有理数,则m可以为

A. 6

B. 8

C. 10

D. 12

答案  C

解析  

a_n%3DAn%2BB,则na_n%3DAn%5E2%2BBn.

所以

a_1%2B2a_2%2B3a_3%2B%5Ccdots%2Bma_m%3D%5Cfrac%7BAm%5Cleft(m%2B1%5Cright)%5Cleft(2m%2B1%5Cright)%7D%7B6%7D%2B%5Cfrac%7BBm%5Cleft(m%2B1%5Cright)%7D%7B2%7D%3D%5Cfrac%7Bm%5Cleft(m%2B1%5Cright)%7D%7B2%7D%5Cleft%5B%5Cfrac%7BA%5Cleft(2m%2B1%5Cright)%7D%7B3%7D%2BB%5Cright%5D

为有理数,等价于%5Cfrac%7BA%5Cleft(2m%2B1%5Cright)%7D%7B3%7D%2BB%5Cin%20%5Cmathbb%7BQ%7D.

m%3D3k%2B1%5Cleft(k%5Cin%5Cmathbb%7BN%7D%5Cright),则%5Cfrac%7B2m%2B1%7D%7B3%7D%5Cin%5Cmathbb%7BN%7D%5E*,所以a_%7B%5Cfrac%7B2m%2B1%7D%7B3%7D%7D%5Cin%20%5Cmathbb%7BQ%7D.

则数列%5Cleft%5C%7Ba_n%5Cright%5C%7D中至少有一个有理数,所以m%3D3k%2B1%5Cleft(k%5Cin%5Cmathbb%7BN%7D%5Cright)符合题意.

m%5Cneq%203k%2B1%5Cleft(k%5Cin%5Cmathbb%7BN%7D%5Cright),存在无理数A和无理数B使得%5Cfrac%7BA%5Cleft(2m%2B1%5Cright)%7D%7B3%7D%2BB%5Cin%20%5Cmathbb%7BQ%7D.

此时,由于%5Cforall%20n%5Cin%20%5Cmathbb%7BN%7D%5E*%2Cn-%5Cfrac%7B2m%2B1%7D%7B3%7D为非零的有理数,所以

%5Cforall%20n%5Cin%20%5Cmathbb%7BN%7D%5E*%2Ca_n%3D%5Cfrac%7BA%5Cleft(2m%2B1%5Cright)%7D%7B3%7D%2BB%2BA%5Cleft%5Bn-%5Cfrac%7B%5Cleft(2m%2B1%5Cright)%7D%7B3%7D%5Cright%5D%20%5Cnotin%20%5Cmathbb%7BQ%7D

则此时%5Cleft%5C%7Ba_n%5Cright%5C%7D中不存在有理数,所以m%5Cneq%203k%2B1%5Cleft(k%5Cin%5Cmathbb%7BN%7D%5Cright)不符合题意.

综上,m%3D3k%2B1%5Cleft(k%5Cin%5Cmathbb%7BN%7D%5Cright).

选项中A、B、D均不符合题意,C符合题意.

故选:C.

8. 已知正n边形顶点中任取3点,构成钝角三角形的概率为%5Cfrac%7B93%7D%7B125%7D,则n的所有可能值的和为___________.

答案  503

解析

(1) 若n%3D2k%5Cleft(k%5Cgeq2%2Ck%5Cin%5Cmathbb%7BN%7D%5E*%5Cright),设各顶点为A_1%2CA_2%2C%5Ccdots%2CA_%7B2k%7D.

先取A_1为该三角形的钝角顶点,则直径A_1A_%7Bk%2B1%7D将圆分成两部分.

则该三角形的另外2个顶点分别位于这两个部分.

若其中一个顶点为A_s%5Cleft(2%5Cleq%20s%5Cleq%20k%5Cright),则另一个顶点为A_t%5Cleft(s%2Bk%2B1%5Cleq%20t%20%5Cleq%202k%5Cright).

所以任取3点构成的钝角三角形的总数为

2k%5Csum_%7Bs%3D2%7D%5Ek%20%7B%5Cleft(k-s%5Cright)%7D%20%3Dk%5Cleft(k-1%5Cright)%5Cleft(k-2%5Cright)%3D%5Cfrac%7B1%7D%7B8%7Dn%5Cleft(n-2%5Cright)%5Cleft(n-4%5Cright)

任取3点构成三角形的总数为

%5Cmathrm%7BC%7D_n%5E3%3D%5Cfrac%7B1%7D%7B6%7Dn%5Cleft(n-1%5Cright)%5Cleft(n-2%5Cright)

任取3点构成的钝角三角形的概率为

%5Cfrac%7B%5Cfrac%7B1%7D%7B8%7Dn%5Cleft(n-2%5Cright)%5Cleft(n-4%5Cright)%7D%7B%5Cfrac%7B1%7D%7B6%7Dn%5Cleft(n-1%5Cright)%5Cleft(n-2%5Cright)%7D%3D%5Cfrac%7B3n-12%7D%7B4n-4%7D%3D%5Cfrac%7B93%7D%7B125%7D

n%3D376,符合题意.

(2) 若n%3D2k%2B1%5Cleft(k%5Cin%5Cmathbb%7BN%7D%5E*%5Cright),设各顶点为A_1%2CA_2%2C%5Ccdots%2CA_%7B2k%2B1%7D.

先取A_1为该三角形的钝角顶点,则过A_1直径的将圆分成两部分.

则该三角形的另外2个顶点分别位于这两个部分.

若其中一个顶点为A_s%5Cleft(2%5Cleq%20s%5Cleq%20k%2B1%5Cright),则另一个顶点为A_t%5Cleft(s%2Bk%2B1%5Cleq%20t%20%5Cleq%202k%2B1%5Cright).

所以任取3点构成的钝角三角形的总数为

%5Cleft(2k%2B1%5Cright)%5Csum_%7Bs%3D2%7D%5E%7Bk%2B1%7D%20%7B%5Cleft(k-s%2B1%5Cright)%7D%20%3D%5Cfrac%7Bk%5Cleft(k-1%5Cright)%5Cleft(2k%2B1%5Cright)%7D%7B2%7D%3D%5Cfrac%7B1%7D%7B8%7Dn%5Cleft(n-1%5Cright)%5Cleft(n-3%5Cright)

任取3点构成三角形的总数为

%5Cmathrm%7BC%7D_n%5E3%3D%5Cfrac%7B1%7D%7B6%7Dn%5Cleft(n-1%5Cright)%5Cleft(n-2%5Cright)

任取3点构成的钝角三角形的概率为

%5Cfrac%7B%5Cfrac%7B1%7D%7B8%7Dn%5Cleft(n-1%5Cright)%5Cleft(n-3%5Cright)%7D%7B%5Cfrac%7B1%7D%7B6%7Dn%5Cleft(n-1%5Cright)%5Cleft(n-2%5Cright)%7D%3D%5Cfrac%7B3n-9%7D%7B4n-8%7D%3D%5Cfrac%7B93%7D%7B125%7D

n%3D127,符合题意.

综上,n的所有可能值有376和127,它们的和为503.

2023浙江大学强基数学逐题解析(3)的评论 (共 条)

分享到微博请遵守国家法律