欢迎光临散文网 会员登陆 & 注册

A Deliveryman in Prison: Chinese Delivery Riders’ Protection

2023-03-13 23:05 作者:方猫zzz  | 我要投稿

Abstract

As an O2O service, the food delivery industry has undergone significant advancement in the past few years in China.  However, despite its outstanding financial achievement,the delivery platforms such as Ele.me and MeiTuan have also been critiqued for their unethical behaviour toward delivery riders. Furthermore, caused by opaque algorithm and transfer of responsibility and contradiction of the platform, some critical work-safety issues comprising risks of traffic accidents and poor working conditions have been discussed. This study probes this issue by analyzing it in line with ethics and philosophy theories. As a result, three aspects of a protection approach are proposed to mitigate the aforementioned challenges.  Thus, this study would contribute to those ethical issues existing in the food delivery industry.

Keywords: food delivery rider; protection; platform

 

1    Introduction

Recent years have witnessed a spurt of progress in China’s Internet technology, China’s sharing economy has likewise proliferated.  As the platforms has found its way into people’s daily life, numerous flexible employment opportunities are creating.   A large amount of workers achieve employment by providing services to sharing economy platforms. According to estimates by the State Information Center, in 2016, the transaction volume of the Chinese sharing economy was about 3,452 billion yuan.  The number of employees on the sharing economy platform was about 5.85 million. Moreover, the number of people who provided services for the sharing economy reached 60 million(Center, 2017).

Meanwhile, the food delivery industry is booming in China.   According to iResearch’s  “2016 China Food Delivery O2O Industry Development Report”(iResearch, 2016), China’s catering O2O market size in 2015 was 161.55 billion yuan, accounting for 5.0% of the overall catering industry. In 2018, the catering O2O market will reach 289.79 billion yuan; in 2015, the scale of the Chinese catering delivery market has exceeded 230 billion yuan, accounting for 7.4% of the overall catering consumption. By 2018, this proportion is reaching 14.8%, and the overall scale of the delivery market is that it will also exceed 660 billion yuan.

However, due to the failure of relevant laws and regulations to keep up with the development of the platform economy and the changes in the protection of the rights and interests of delivery workers, the problem of the labour rights and interests of delivery workers being infringed is severe. According to Sohu.com, on April 3, 2016, delivery workers in Meituan’s East China region went on strike collectively in Shanghai due to wage arrears and other issues; Due to the issues of wage arrears and arbitrary deduction of money, the delivery riders have gathered in the Guilin Municipal Labor and Personnel Dispute Arbitration Institute to defend their rights collectively(Sohu,2017). Online platform practitioners have insufficient employment security and are prone to encounter unreasonable labour quotas, labour fraud, lack of welfare, and insufficient social security(Hu, 2018).

Furthermore, writing on digital labour and food delivery was rare until some years prior and has boomed as it were as of late(Abilio, Grohmann, & Weiss, 2021; Anwar & Graham, 2020, 2021; Barratt, Goods, & Veen, 2020; Ferrari & Graham, 2021; Gregory, 2021; Moore & Woodcock, 2021; Tassinari & Maccarrone, 2020; Veen, Barratt, & Goods, 2020).  In any case, within the setting of China, there are still few thinks centring on how delivery riders adjust to this work setting and how they arrange and respond to the algorithmic control of food delivery companies(Lei, 2021; C. Liu & Friedman, 2021; Sun, 2019).

This article adopts a top-down perspective to present the possibility of“human beings” as the main body of labour. Through the research perspective of “algorithms and daily labour practices”, the protection is probed of labour rights and the interests of Chinese delivery workers from manifold perspectives.  And this research lights up hypothetically conceivable diverse shapes of resistance to the control of the food delivery platforms that are


rising among Chinese riders, such as complex strategies of “gaming”the platforms’ calculation. These approaches are plausibility and manage to bolster each other to outlive in this heartless economy. Thus, the results highlight how riders can utilise a few approaches to stand up to the food delivery platforms they work for and how they can cooperate with us consumers against the persecution from the platform.

2    Methodology

In order to study how to safeguard the legitimate rights and interests of riders, the methodology of this paper involves theoretical analysis, moral considerations and research restrictions.

From a philosophical point of view, identifying individual things from general concepts is the characteris- tic of the riders’ social phenomenon.  The speculative deduction method is adopted through certain concepts, categories and systematic analysis and identification of newly observed phenomena.  The analysis of the neces- sity to protect riders is based on Foucault’s panopticon(Foucoult, 1975) and the machine view of the Marxist philosophy(MacKenzie, 1984) method.

Concretely, the article compares some mainstream algorithms found on the Internet to discover the restrictions of the platform’s algorithm(Mar`a et al.,2021;Todol´ı-Signes,2021;G. Zou & Li, 2020). As for the issue of platform transfer contradictions and conflicts, this category of behaviour is irrational from the perspective of ethics. After that, starting from the concept of how to solve the algorithm’s limitations and the concept of equal rights and interests of riders, this article tries to find out the difficulties encountered by riders to participate in social security affairs(Papakostopoulos & Nathanael, 2021; Xu & Jiang, 2021). Ultimately, it gives corresponding solutions from the legal level.

Specific practical cases are utilised to further discuss the problem. Through inductive analysis, we can com- prehend what methods and measures the platform has adopted to restrict riders from abandoning their legitimate rights and interests.

3    Related Work

With the growth of our country’s service industry, it now accounts for a significant portion of GDP. The number of employees is steadily expanding. In July 2016, the new blue-collar population was 15.48 million, and by July 2020, it will have increased to 33.79 million(Castells, 1996)QuestMobile2020. According to a picture study, riders and couriers account for most of the emerging blue-collar population.  As online services grow, offline resources feed back into the system, and more workers join.

The number of riders and couriers has increased as a result of the rapid development of these two industries and the deployment of the digital economy. There are numerous domestic studies on this topic as well. Liu(L. Liu, 2020) proposed that some technologies, such as big data, be used to examine the performance of online restaurant qualifications and to collaborate with government oversight offices for governance.   It may also fully exploit the benefits of many subjects,  integrate various departments,  enterprises,  and society,  and make full use of all parties’ advantages and resources to assure efficient supervision and create a harmonious and cooperative environment(Hu Yifan, 2016). Zhang Feng(Feng, 2018) emphasises the importance of social power, arguing that government oversight is insufficient and that social powers such as industry associations and autonomous groups should participate in the regulation of the entire sector’s responsibilities as both public and private powers.

Delivery workers are compelled to deal directly with the market, which is beyond the scope of the employ- ment relationship and exposes them to market risk, which should be carried by the employer(Arnold & Bongiovi, 2013; Stewart & Stanford, 2017).  Furthermore, some of the platform’s algorithms place significant constraints on workers’autonomy.  Sun Ping(Ping, 2019) discovered that platforms employ algorithms to carry out increas- ingly accurate and standard management of workers and that the entire labour process of workers is subject to supervision, based on her research on outsourcing riders.

The “uncertainty”generated by independent employment is the primary management difficulty encountered by online labour platform firms in the face of such a vast free labour market. The platform for avoiding employment hazards and ensuring the successful translation of labour into products and services has become “control.”Workers work by the platform algorithm design’s message(Rosenblat & Stark, 2016; Van Doorn, 2017) and follow the directions to finish the work to get paid concealed behind the data transfer is essentially an online platform utilising new technologies to govern the labour power(Rosenblat & Stark, 2016). As a result of real-time monitoring, job autonomy may be reduced, flexible platforms for new employment modes of work autonomy appear to be more limited, and workers are still not informed in real-time quantitative, hidden intelligence platform under the control of hard work, the work independent paradox phenomenon has gradually aroused the concern of the theoretical circle(Mazmanian, Orlikowski, & Yates, 2013; Shevchuk, Strebkov, & Davis, 2019).

As a result, this article examines and comments on studies on the existing online algorithm for labour platform management, starting with task allocation, behaviour control, performance evaluation, and dynamic compensa- tion, and moving on to other aspects of workers’control and influence.  Based on this, various techniques for assisting workers in escaping this control and reducing company control over workers are presented.


4    Necessity

4.1    Occupational Status

There are already multiple jobs in analysing the occupational status of food delivery riders. This article takes Liu Jiachun’s 2020 survey of delivery riders in Guangzhou(Jiachun, 2020) as an example to analyse the occupational status of delivery riders.

First of all, the salary system that pays more for more work is the most significant factor attracting job seekers. According to the survey results, the salary factor is the most critical factor affecting personal satisfaction with the occupation.  In the outside distribution industry, the income source of the delivery riders is apparent. The number of delivery orders, the more orders completed, the higher the salary income. Higher, and there will be additional rewards after reaching a certain amount. Getting more for more work is a common practice in the industry, and delivery riders have also recognised it.  Delivery riders who work hard can even earn a monthly salary of more than 10,000 yuan.

Second, relatively free working hours are also a significant factor in attracting job seekers. The delivery riders do not have a fixed working time and place thanks to the particular working mechanism. The delivery riders can choose the working time by themselves. During the working period, the busy time nodes are concentrated during lunch and dinner. The rest of the time is in a state of occasional orders and frequent breaks. The delivery riders can freely use this free time. The relatively free working time attracts more and more people who do not want to restrict job seekers.

Third, the lower entry barriers provide a large number of employment opportunities.  As a labour-intensive industry, the food delivery industry does not have high requirements for riders. To become a food delivery worker only requires simple communication skills and a smartphone, and even electric vehicles as delivery tools can be rented from the company.  The continuous growth of the food delivery industry has also created numerous job demands.

At the same time, there are also numerous problems in the work of food delivery riders, such as unstable work, the unclear employment relationship between riders and food delivery platforms, and a high turnover rate; platforms have strict restrictions on delivery time, and unreasonable factors exist, resulting in The distribution process is prone to safety accidents; the income uncertainty is high, the salary level is wholly linked to the labour level, the labour time is long, and the labour intensity is high; Lack of protection of labour rights, the platform evades employment by registering riders as self-employed, and delivery riders are indifferent to their rights and interests. In addition, there are problems such as the lack of personal career prospects.

4.2    Philosophical Perspectives

In Discipline and Punish (Foucoult, 1975), Foucault proposed the concept of “Panopticism” to portray the mech- anism of surveillance and power operation in modern society.  In  “panopticism”, Foucault constructed a state where the authority can monitor everyone in modern society. People constantly need to remind themselves to pay attention to whether their behaviour conforms to the norm.  Furthermore, this description is more appropriate for the labour process of food delivery riders.

The monitoring of riders comes from both the online platform and the labour situation in which the riders live. These incorporate the monitoring of riders by the delivery algorithm system, the attention of site managers to riders, and the background gaze of customers on riders delivering meals. The increasingly complete food delivery algorithm system brings more and more high-quality route planning assistance to the rider and, at the same time, brings more advanced monitoring.

The application of machines ought to speed up the work efficiency of workers, gain more leisure time for workers, and construct conditions for the actualisation of the unrestrained growth of human beings.  However, the nature of capital’s profit-seeking makes machines ultimately become a means of extending workers’working hours and obtaining surplus value.  Food delivery platforms also have the same problem.  According to relevant statistics and surveys, food delivery riders generally report long working hours, overwhelming tasks, and high pressure; traffic safety is the rider’s top concern..

Although the salary of the rider has advantages over other positions, the price of a high salary is a long working time: according to the survey, the rider has an average of two days off or no rest every month, the salary is 5000-8000 yuan, and the working hours are 8-13 hours(P. Li, 2019). Behind the principle of bill settlement and more pay for more work is proof that the platform economy is still basically a labour-intensive industry in the period of sharing economy.  Behind the ”high salary” are longer working hours and tremendous work pressure, the hidden threat to people’s lives and health, and the blockade of people’s accessible and comprehensive growth.

5    Methods Used by Platforms to Oppress Delivery Riders

5.1    Occupational Algorithms

The food delivery platform has designed a complete set of algorithms according to the distribution link, the central part of which is order scheduling and route planning. In the platform, the intelligent algorithm management system


has become the core tool for platform enterprises to control the behaviour of delivery riders.  The limitations of the delivery algorithm mainly include the design idea that the algorithm ignores the interests of the rider, the natural limitation of the algorithm, and the imperfection of the algorithm design.

The algorithm design mainly considers time efficiency, and the goal of algorithm optimisation is to compress ETA (Estimated Time of Arrival)(Qin, Liu, & Jiang, 2021). In order to improve customer satisfaction and then seize market share, food delivery platforms continue to compress delivery time, ignoring the interests of riders. The reduction in the average delivery time brings more safety hazards to the riders.  Nevertheless, the rider’s salary has not improved with the increase in orders. With the gradual stabilisation of the food delivery industry, the industry has entered a state of stock competition.  In recent years, the wages of riders have shown varying degrees of decline due to the gradual reduction of the cost per order(Yuan, 2021).

The essence of an algorithm is a specific thinking path or method, which belongs to human wisdom and has natural limitations. Algorithms coordinate orders and transport capacity but cannot handle the conflict between increased order volume and insufficient capacity.  The order volume increases under exceptional circumstances such as typhoon days and blizzard weather, but the rider delivery time increases sharply. Orders can be digested by artificially increasing the number of riders receiving orders simultaneously.   Nonetheless, when riders are overloaded with orders, safety accidents are the potential to occur.  The data shows that 88.28% of the riders choose to violate the traffic safety rules because they are worried about the overtime of their orders(T. Li & Li, 2021).

There are some defects in the design of the algorithm, such as unreasonable navigation, not considering the significant variance of meal time, and the way distances are calculated. Some delivery riders responded that there are problems such as walking mode and retrograde guidance in the navigation of food delivery routes(K. Zou & Chen, 2021).  Due to the increase in the number of orders received by restaurants during the peak period and the inability to prepare special meals in advance, the meal delivery time is prone to large fluctuations.  If the delivery time is estimated by the average meal time, it is prone to order overtime. In addition, when calculating the distribution distance, the algorithm often ignores unique terrains such as red street lights, elevators, and overpasses(Jin, 2021).

5.2    Transfer of Contradiction

On September 9, 2020, Ele.Me announced a new function of their delivery app called ”Would you like to give me five more minutes?” In this slogan, the “You” are customers; the“Me” stands for delivery riders. This function asks the customers if they would be willing to give more delivery time to the riders if they are not in a hurry, which indirectly says that  “if the delivery riders got involved in the traffic accidents, it is the customers’ fault that they did not want them to slow down.”If we think of this action rationally, they are morally kidnapping their customers.   The announcement provoked outrage on the Internet, with myriad questioning that Ele.Me transferred the conflict to consumers and riders,  “Why doesn’t the platform give them more time to deliver”. The time compression caused by the compulsory platform order, the delay of the restaurant dining out, and the technical blind spot are all critical factors that lead to the rider’s timeout.  Nevertheless, these factors are not recognised by the platform, nor are they well known to the public.  It can be said that the platform is the dominant rider time race, the restaurant is the rider time limit ignored, and the technical blind spot is the rider time pressure booster.  However, the rider himself is the burden of the timeout problem.  In recent years, there have been numerous reports of conflicts between consumers and delivery riders, and some of them have even turned into vicious incidents(Yi Zhu, 2017).  These events reflect a common essence:  the takeout platform has turned its conflict over the payment distribution into a conflict between the customer and the rider over the service experience.

The reason why the contradiction can be transferred successfully is the establishment of the customer evalua- tion mechanism(Zhao & Wang, 2017). In the Internet platform economy, the platform system will issue evaluation invitations to customers after the service of delivery riders is over.  While not all customers actively rate, this evaluation mechanism is a highly credible threat that may lead to negative results. In theory, the evaluation score is made by the customer according to the service experience. However, different customers have different feelings and requirements for the service. The factors that affect the customer service experience in real life are incredibly complex and are not controlled by the labourer. Most customers hope that the shorter the expected delivery time, the better.  Once the rider exceeds the time limit and fails to meet the customer’s psychological expectations, many customers will be dissatisfied and give a bad review. Theoretically, the time left by the platform for riders should be more than enough. Why is the overtime problem? It is related to the order distribution method of the platform, the meal arrangement of restaurants and the blind spot of the technology itself.

For the order distribution method of the platform, when the rider hangs excessive orders, the delivery time will become tense.  For example(Shen, 2019), during the afternoon rush hour, a rider received seven orders from the system. The first one was delivered at 11:45 and required to be delivered at 12:30, and the last one was delivered at 12:15 and required to be delivered at 13:00. The rider needs to complete seven orders within 75 minutes. The average delivery time for each order is less than 11 minutes, rather than 30 minutes, as the customer sees.  In addition, the delay in the meal of merchants will also make riders pay the price. For many restaurants, takeout business is only to expand the source of customers and increase revenue through new channels; dining is the main business.  According to the agreement between the platform and the merchant, the merchant’s estimated


meal delivery time is 15 minutes after the customer places an order; this time is relatively abundant in regular hours but not enough in the afternoon and evening peak hours.  The platform will not fine the delay in meal delivery, but the rider will bear the consequences.  Moreover, there are numerous blind spots in the platform system that can not be predicted and managed effectively, which further increases the complexity and difficulty of distribution. The riders still bear the negative consequences. The blind area that technology can not reach is mainly the complexity of traffic conditions, the difference in customer’s specific position and the unreliability of technology itself.

5.3    Transfer of Responsibility

As a new economic form, the food delivery platform is closely connected with people’s life. Furthermore, it makes people’s lives more convenient, and it helps reduce employment pressure.  However, in the process of pursuing economic interests, the food delivery platform forgets various responsibilities which it should bear.  Even worse, the platform transfers them to other social subjects.

According to the research of Shukai Zhang, many restaurants without food safety licence have been found to join food delivery platforms such as Meituan(S. Zhang & Lei, 2016). This phenomenon leads to a serious threat to customers’ health. As a platform aimed to provide services to consumers, it should strengthen the inspection of restaurants and take responsibility for customers’ food safety, rather than put all the blame on the restaurants.

In addition, the traffic accidents caused by delivery riders occur more and more frequently. On the surface, it is the riders’fault for violating traffic rules. However, fundamentally, the frequent occurrence of traffic accidents is due to the pressure imposed by the food delivery platform(Lv, Zhen, & Guo, 2021). In order to maximise profits, the platforms use the mechanism for customer complaints, fines, and other means to squeeze the productivity of delivery riders to create more profits.  On the contrary, they shift the responsibility for personal safety to social traffic and riders.

Currently, full-time riders and crowdsourced riders are the main types of delivery workers who sign different labour contracts(Que, 2021).   Full-time riders have a legal relationship with a labour outsourcing company. Nevertheless, there is no direct relationship between the food delivery platform company and them.  From the perspective of the contract contents of crowdsourced riders, the riders and the platform are a civil contractual relationship, not a labour relationship. Therefore, the food delivery platform can shirk the responsibility regardless of the type of riders.  Wang Quanxing showed his point of view in the article ”Features, Challenges and Legal Regulations of Flexible Employment in my country’s New Economy” that the current Internet platform has changed the traditional employment relationship in order to transfer the responsibility of the employer(Wang & Liu, 2021), so a large number of flexible employment workers have appeared in the society.

With the development of the platform economy, the monopoly phenomenon of the platforms has gradually begun to appear. The result of monopoly is that restaurants and riders have no choice. From the perspective of riders, the food delivery platform reduces the salary of them. From another point of view, the food delivery plat- form claims extra management fees from restaurants, further increasing the economic burden. These behaviours squeeze riders and restaurants but eventually lead to consumers paying the bill.  For the above reasons, current food delivery platforms have done great damage to the market environment, which increasing the pressure on the government to maintain the market order.

6    The Specific Protection Approach

6.1    Self Protection

As grass-roots workers, riders have formed the work values of ”making money is the most important”and ”time is the first”. The high working hours and intensity also greatly increase the probability of safety accidents caused by fatigue driving in the process of food delivery. At the same time, most of them lack road safety knowledge, and often have a fluke mentality. Therefore, riders should take the initiative to learn safety knowledge and laws and regulations, for themselves and their families. As the slogan of the Wandering Earth goes, “Routes are countless, safety is foremost, with unregulated driving, your loved ones end up in tears.”

Riders mechanically work according to the platform algorithm, but the algorithm often has many defects, such as incorrect route recommendation and too short delivery time. Under the strict evaluation mechanism, the riders should bear the consequences of the working errors caused by the platform algorithm defects.  Although riders can propose the right to interpret the algorithm to the platform, they cannot be well treated due to their weak individual power. Therefore, riders need to unite with each other, or establish an association to protect the rights and interests of riders, and organize riders to seek legal rights and interests together.

In addition, it is difficult to confirm labor relations due to the diversity of workers employed by riders. Once the riders confront the platform to safeguard their rights and interests, the platform has absolute power. Existing conditions, through litigation to solve the problem of right to work is the most effective, so the riders need to have certain legal common sense, especially the need to have some evidence of consciousness.  In the process of establishing employee relationship with the platform, all written materials and relevant evidence related to the


platform’s commitment should be properly preserved, and seek help from legal professionals in time if any of the above problems occur.

6.2    Social Protection

The food delivery industry covers numerous people and has a significant impact. Its healthy development requires the joint maintenance of all sectors of society.  Only by establishing and improving the collaborative governance mechanism of multiple government departments and actively playing the role of consumer complaints and social media supervision can the relationship between the platform and riders be harmonious for a long time.

As the served group, consumers need to clearly understand the scope of takeout service while safeguarding their  rights and interests. Some riders were maliciously criticized by customers because they refused to meet customers’ requirements other than delivering meals(Xiang & You, 2022), which violated the spirit of the contract.  When  the meal delivery is delayed due to emergencies, riders need more tolerance and kindness from consumers.

The food delivery platform is the largest stakeholder in the takeout industry and bears the responsibility of maintaining the rationalisation of rules and humanisation of algorithms(B. Zhang, 2021).  The platform shall take the following measures to implement relevant responsibilities:  improve and upgrade the appeal function of delivery riders to avoid affecting the assessment of delivery riders due to overtime and complaints caused by bad weather and accidents; establish a mutual evaluation system between delivery riders and consumers to reduce the impact of negative bad reviews by consumers; add factors such as meal time, road conditions, and hardware facilities that affect delivery efficiency to the timing algorithm to ensure a reasonable delivery time limit.

6.3    National Protection

The government is expected to improve current labour law.  The gig economy workers should be regarded as a specific occupational type because a clear definition can help solve the problem of ambiguous labour relations. The labour rights and interests of delivery riders should be included in the protection scope of the labour law.

The more transparent the algorithms are, the less likely riders are squeezed.  The related policies should be issued to require the food delivery platform to disclose the algorithm rules.  One of the advantages of doing this is that delivery riders’ right to information can be guaranteed. What’s more, the supervision of the food delivery platforms can be strengthened.

Penalties should be made for monopolistic behaviour. On the issue of monopoly, the problem that restaurants are forced to ”choose one” is particularly prominent.   This limits market competition, stifles innovation and development and damages the interests of restaurants and consumers. The food delivery platforms need to avoid monopolistic development to truly serve the entity economy.

7    Results and Discussion

In conclusion, even though the food delivery industry is a pretty successful O2O service in China and reflects the emergence of a new normal in China’s economy, there are still problems when it comes to labour rights and the interests of delivery workers by taking a closer look at the interviews and news articles of some delivery workers.

The delivery platform used opaque algorithms to squeeze delivery time from the delivery rider due to the unreasonable design of the algorithms, such as path planning, order allocation, rewards and punishments, et al., causing the rider to be in a rush to delivery and fall into a traffic accident.

In the face of these problems, the platform did not actively solve its problems but began to transfer contra- dictions and responsibilities.

For one thing, through the evaluation mechanism, the platform transforms the conflict between the rider and the customer on the payment distribution into the conflict between the rider and the customer on the service experience, leading to the vicious conflict between the rider and the customer user.

Besides, takeout platforms are not responsible for the food safety of restaurants and the safety of riders and rely on their monopoly status to reduce riders’ wages.  In addition, as a new form of labour in the gig economy era, it is hard to find clear protection clauses from national laws and regulations due to the ambiguity of their identity and lack of a perfect social security mechanism.

It can be seen that the food delivery rider’s living environment is terrible. We must take measures to protect the food delivery rider’s legitimate rights and interests. According to the above discussion, we discuss protecting riders’ rights and interests from three angles.

From the riders’ perspective, it is necessary to strengthen the rider’s traffic safety training to improve their awareness of traffic safety.   Due to the weak personal strength,  delivery riders can jointly record the illegal behaviour of the platform and actively join the guild to participate in collective negotiations and sign collective contracts to ask for their legitimate rights and interests.

From a social perspective, the healthy development of the delivery industry requires standard maintenance of all sectors of society.  Consumers can give riders more tolerance while protecting their rights and interests. Delivery platforms should change the original reward and punishment mechanism, establish a more humanised


evaluation mechanism, and bear responsibility for the interests of consumers. The restaurant must also take into account the limitations of the rider and provide a relatively preferred dining order for the riders;

Finally, we discuss it from a national perspective.  The newly born labour form urgently needs replacement labour relations and laws and regulations to specify what obligations and responsibilities the platform should pay. Another significant aspect is that, while some of the optimization strategies for delivery times have been made public, many problems remain hidden in the algorithm’s black box. The relevant departments need to monitor the platform algorithm, improve the algorithm’s transparency, and punish the monopoly behaviour of the platform. The Beijing leadership, including the trade union federation, eventually issued a set of ”guiding opinions” in an attempt to strengthen protection for food delivery workers (RESOURCES & SOCIAL SECURITY, 2021).  The contestation of power between labour and capital will continue to play out in state-guided digital capitalism.

References

Abilio, L. C., Grohmann, R., & Weiss, H. C.  (2021).  Struggles of delivery workers in brazil:  Working conditions and collective organization during the pandemic.  Journal of Labor and Society , 24(4), 598–616.

Anwar, M. A., & Graham, M. (2020). Hidden transcripts of the gig economy: labour agency and the new art of resistance among african gig workers.  Environment  and Planning A:  Economy  and Space , 52(7), 1269– 1291.

Anwar, M. A., & Graham, M.  (2021).  Between a rock and a hard place: Freedom, flexibility, precarity and vulnerability in the gig economy in africa.  Competition &  Change , 25(2), 237–258.

Arnold, D., & Bongiovi, J. R. (2013). Precarious, informalizing, and flexible work: Transforming concepts and understandings. American Behavioral Scientist , 57(3), 289–308.

Barratt,  T.,  Goods,  C., & Veen,  A.   (2020).   ‘i’m my own boss. . . ’:  Active intermediation and  ‘en- trepreneurial’worker agency in the australian gig-economy. Environment and Planning A: Economy and Space , 52(8), 1643– 1661.

Castells, M.  (1996). The information age : economy, society and culture (vol i - iii).

Center, C. I.  (2017).  China sharing economy development report 2017.  [Online].  (http://www.sic.gov .cn/News/568/7737.html Accessed October 4, 2017)

Feng, Z.  (2018). Mechanism innovation of food safety regulation in my country from the perspective of information asymmetry.

Ferrari, F., & Graham, M.  (2021).  Fissures in algorithmic power:  platforms, code, and contestation. Cultural Studies , 35(4-5), 814–832.

Foucoult, M.  (1975). Discipline and punish. A . Sheridan,  Tr., Paris, FR,  Gallimard .

Gregory, K.  (2021).  ‘my life is more valuable than this’:  Understanding risk among on-demand food couriers in edinburgh.  Work, Employment and Society , 35(2), 316–331.

Hu, L.   (2018).  Characteristics, development bottlenecks and institutional support of online platform employment in my country.  Chinese labor(2), 7.

Hu Yifan, L. X. C. J., Li Lixia.  (2016). Safety supervision of online takeaway food from the perspective of governance theory.  Journal of Shandong Administration Institute(4), 75–79.

iResearch.   (2016).   2016  china food  delivery  o2o  industry  development  report.    [Online].   (https:// report.iresearch.cn/report/201607/2615.shtml)

Jiachun, L. (2020). Investigation on survival status of the deliveryman in guanzhou (Unpublished master’s thesis). South China University of Technology.

Jin, Y.  (2021). Research on optimization of takeaway delivery route considering random time.

Lei, Y.-W.   (2021).   Delivering solidarity:  Platform architecture and collective contention in china’s platform economy. American Sociological Review , 86(2), 279–309.

Li, P.  (2019).  Survey on the survival status of delivery persons——based on case interviews of delivery delivery persons in ya’an city, sichuan province.  modern business(13), 3.

Li, T., & Li, Z.  (2021).  How social work intervenes in rider care service——thinking based on ”rider survival and development demand report” .  Chinese social work, 30-31.

Liu, C., & Friedman, E.  (2021). Resistance under the radar: Organization of work and collective action in china’s food delivery industry.  The  China Journal , 86(1), 68–89.

Liu, L. (2020). The ”difficulty in fulfilling” the qualification review obligation of the third-party platform of online catering services and the implementation countermeasures of big data.  Legal Forum .

Lv, H., Zhen, X., & Guo, L.  (2021).  Safety risk analysis and countermeasures of ”riders” in takeout. Modern  Occupational Safety(10), 3.

MacKenzie, D.  (1984). Marx and the machine.  technology and culture , 25(3), 473–502.

Mar`a, C., et al.  (2021). Food-delivery riders, algorithms and autonomy.  Social Europe(March).


Mazmanian, M., Orlikowski, W. J., & Yates, J.  (2013).  The autonomy paradox:  The implications of mobile email devices for knowledge professionals.  Organization science , 24(5), 1337– 1357.

Moore, P. V., & Woodcock, J.  (2021).  Augmented exploitation:  artificial intelligence,  automation,  and work. Pluto Press.

Papakostopoulos, V., & Nathanael, D.   (2021).  The complex interrelationship of work-related factors underlying risky driving behavior of food delivery riders in athens, greece.   Safety  and  health  at work .

Ping, S. (2019). Digital labor under ”algorithmic logic”: A study of food delivery workers in the platform economy. ideological front , 45(6), 50.

Qin, W., Liu, A., & Jiang, Y.  (2021). The ”difficulty of algorithmic system” of food delivery riders and its solution. Shanghai Legal Studies, 11.

Que, Z.  (2021).  Judicial determination of labor relations in the context of flexible employment of food delivery platforms.  Chinese Applied Law .

RESOURCES, M. O. H., & SOCIAL SECURITY, T. P. R. O. C. e. a.  (2021).   Guiding  opinions  on protecting  workers’  labor  security  rights  and  interests  in  new forms  of employment  [in  chinese]. http://www.gov.cn/zhengce/zhengceku/2021-07/23/content 5626761.htm.

Rosenblat, A., & Stark, L.  (2016).  Algorithmic labor and information asymmetries:  A case study of uber’s drivers. International journal of communication , 10, 27.

Shen, J.   (2019).   What  happens  when  you  give  takeout  a  bad  review?     (https://www.thepaper.cn/

newsDetail forward 5349961)

Shevchuk, A., Strebkov, D., & Davis, S. N. (2019). The autonomy paradox: How night work undermines subjective well-being of internet-based freelancers. ILR Review , 72(1), 75– 100.

Sohu.   (2017).   Sohu. com’s  takeaway  strike  report.    [Online].   (https://www.sohu.com/a/151557141 741612)

Stewart, A., & Stanford, J.  (2017).  Regulating work in the gig economy:  What are the options?   The Economic and Labour Relations Review , 28(3), 420–437.

Sun, P.   (2019).  Your order, their labor:  An exploration of algorithms and laboring on food delivery platforms in china.  Chinese Journal of Communication , 12(3), 308–323.

Tassinari, A., & Maccarrone, V.  (2020). Riders on the storm: Workplace solidarity among gig economy couriers in italy and the uk.  Work, Employment and Society , 34(1), 35–54.

Todol´ı-Signes, A.  (2021).  Spanish riders law and the right to be informed about the algorithm.  Social Science Research Network .

Van Doorn, N. (2017). Platform labor: on the gendered and racialized exploitation of low-income service work in the ‘on-demand’economy. Information,  Communication & Society , 20(6), 898–914.

Veen, A., Barratt, T., & Goods, C.  (2020).  Platform-capital’s ‘app-etite’for control:  A labour process

analysis of food-delivery work in australia.  Work, Employment and Society , 34(3), 388–406.

Wang, Q., & Liu, Q.  (2021).  Characteristics, challenges and legal regulations of flexible employment in my country’s new economy. Law Review(2019-4), 79-94.

Xiang, C., & You, Z.  (2022).  A study on the influencing factors of the professional behavior of food delivery riders under the multi-dimensional relationship——based on the investigation of city a. Legal Expo, 27-29.

Xu, X., & Jiang, T.  (2021).  How can millions of chinese food delivery riders be managed in an orderly way: Based on the labor process theory. E3S  Web  of Conferences .

Yi Zhu, L. Z. H. K., BaoChang Qiu.  (2017). Things that need to be improved on the delivery platform. , 005. DOI: 10.28241/n.cnki.nfzrb.2017.000384

Yuan, J.  (2021). Research on the protection of labor safety rights and interests of crowdsourcing riders on food delivery platforms under the background of new business formats.

Zhang, B.  (2021).  It is urgent to promote the rationalization of the rules of the food delivery platform and the humanization of the algorithm. , 003.

Zhang, S., & Lei, X.  (2016). Internet takeaway food safety regulatory issues.  Modern Food(3), 5.           Zhao, L., & Wang, M.  (2017).  City’s emerging professional youth migrant workers’ social adaptation -

takes beijing takeaway rider as an example.  Journal of China  Youth Political Academy , 036(002), 50-57.

Zou, G., & Li, Y. (2020). Improvement of genetic algorithm and the application in computer simulation model of o2o delivery strategies. international symposium on computational intelligence and design .

Zou, K., & Chen, M. (2021). The dilemma and way out of the protection of rights and interests of ”online appointment workers” under the control of algorithms. Price  Theory and Practice, 44-48+93.


A Deliveryman in Prison: Chinese Delivery Riders’ Protection的评论 (共 条)

分享到微博请遵守国家法律