视频 BV1bz411h7h9 定理证明
定理1.
设PF1=c,PF2=b,∠F1PB=α,∠F2PB=β
SΔABC
=SΔPF1B+SΔPF2B
即bcsin(α+β)/2
=(csinα+bsinβ)AD/2
即sin(α+β)/AD
=sinα/b+sinβ/c
得证
定理2.
AD为角分线
有AB/AC=BD/CD
即CD·AB
=BD·AC
即(BD+CD)·CD·AB
=(BD+CD)BD·AC
即CD²AB+BD·CD·AB
=BD²AC+BD·CD·AC
即-BD·DC·AC+BD·DC·AB
=-CD²AB+BD²AC
即AB·AC²-AB²·AC-
BD·DC·AC+BD·DC·AB
=AB·AC²-AB²AC
-CD²AB+BD²AC
即AB·AC²-AB²AC
-CD²AB+BD²AC
=(AB·AC-BD·DC)(AC-AB)
即AB·AC-BD·DC
=(AB·AC²-CD²AB+BD²AC-AB²AC)
/(AC-AB)①
AD为角分线
有(AB²+AD²-BD²)/(2AB·AD)
=(AC²+AD²-CD²)/(2AC·AD)
即(AB²+AD²-BD²)/AB
=(AC²+AD²-CD²)/AC
即AB²AC+AD²AC-BD²AC
=AC²AB+AD²AB-CD²AB
即AD²
=(AC²AB-CD²AB+BD²AC-AB²AC)
/(AC-AB)②
由①②
AD²=AB·AC-BD·DC
得证