欢迎光临散文网 会员登陆 & 注册

CVPR'23 最新 70 篇论文分方向整理|包含目标检测、图像处理、人脸、医学影像、半监督

2023-03-20 10:10 作者:极市平台  | 我要投稿

编辑丨极市平台

CVPR2023已经放榜,今年有2360篇,接收率为25.78%。在CVPR2023正式会议召开前,为了让大家更快地获取和学习到计算机视觉前沿技术,极市对CVPR023 最新论文进行追踪,包括分研究方向的论文、代码汇总以及论文技术直播分享。

CVPR 2023 论文分方向整理目前在极市社区持续更新中,已累计更新了158篇,项目地址:cvmart.net/community/de

以下是最近更新的 CVPR 2023 论文,包含目标检测、图像处理、人脸、场景重建、医学影像、半监督学习/弱监督学习/无监督学习/自监督学习等方向。

可打包下载:cvmart.net/community/de

检测

2D目标检测(2D Object Detection

[1]CapDet: Unifying Dense Captioning and Open-World Detection Pretraining

paper:arxiv.org/abs/2303.0248

[2]Enhanced Training of Query-Based Object Detection via Selective Query Recollection

paper:arxiv.org/abs/2212.0759

code:github.com/Fangyi-Chen/

[3]DETRs with Hybrid Matching

paper:arxiv.org/abs/2207.1308

code:github.com/HDETR

[4]YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors(YOLOv7

paper:arxiv.org/abs/2207.0269

code:github.com/WongKinYiu/y

视频目标检测(Video Object Detection

[1]SCOTCH and SODA: A Transformer Video Shadow Detection Framework
paper:arxiv.org/abs/2211.0688

3D目标检测(3D object detection

[1]MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth Seeds for 3D Object Detection

paper:arxiv.org/abs/2209.0310

code:github.com/sxjyjay/msmd

[2]Uni3D: A Unified Baseline for Multi-dataset 3D Object Detection

paper:arxiv.org/abs/2303.0688

code:github.com/PJLab-ADG/3D



[3]LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion

paper:arxiv.org/abs/2303.0359

code:github.com/sankin97/LoG

[4]ConQueR: Query Contrast Voxel-DETR for 3D Object Detection(3D 目标检测的Query Contrast Voxel-DETR

paper:arxiv.org/abs/2212.0728

code:github.com/poodarchu/Co

显著性目标检测(Saliency Object Detection

[1]Texture-guided Saliency Distilling for Unsupervised Salient Object Detection

paper:arxiv.org/abs/2207.0592

code:github.com/moothes/A2S-

车道线检测(Lane Detection

[1]BEV-LaneDet: a Simple and Effective 3D Lane Detection Baseline

paper:arxiv.org/abs/2210.0600

异常检测(Anomaly Detection

[1]Block Selection Method for Using Feature Norm in Out-of-distribution Detection

paper:arxiv.org/abs/2212.0229

[2]Lossy Compression for Robust Unsupervised Time-Series Anomaly Detection

paper:arxiv.org/abs/2212.0230

[3]Multimodal Industrial Anomaly Detection via Hybrid Fusion

paper:arxiv.org/abs/2303.0060

code:github.com/nomewang/M3D

分割(Segmentation

图像分割(Image Segmentation

[1]MP-Former: Mask-Piloted Transformer for Image Segmentation
paper:arxiv.org/abs/2303.0733

code:github.com/IDEA-Researc

[2]Interactive Segmentation as Gaussian Process Classification

paper:arxiv.org/abs/2302.1457

语义分割(Semantic Segmentation

[1]Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP

paper:arxiv.org/abs/2210.0415

code:github.com/facebookrese

[2]Efficient Semantic Segmentation by Altering Resolutions for Compressed Videos

paper:arxiv.org/abs/2303.0722

code:github.com/THU-LYJ-Lab/



[3]SCPNet: Semantic Scene Completion on Point Cloud

paper:arxiv.org/abs/2303.0688

[4]On Calibrating Semantic Segmentation Models: Analyses and An Algorithm

paper:arxiv.org/abs/2212.1205

[5]Learning Open-vocabulary Semantic Segmentation Models From Natural Language Supervision

paper:arxiv.org/abs/2301.0912



[6]Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation

paper:arxiv.org/abs/2208.0991

code:github.com/LiheYoung/Un

[7]Foundation Model Drives Weakly Incremental Learning for Semantic Segmentation

paper:arxiv.org/abs/2302.1425

实例分割(Instance Segmentation

[1]ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution

paper:arxiv.org/abs/2303.0024

[22]PolyFormer: Referring Image Segmentation as Sequential Polygon Generation(PolyFormer:将图像分割表述为顺序多边形生成

paper:arxiv.org/abs/2302.0738

目标跟踪(Object Tracking

[1]Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking

paper:arxiv.org/abs/2203.1436

code:github.com/noahcao/OC_S


[2]Focus On Details: Online Multi-object Tracking with Diverse Fine-grained Representation

paper:arxiv.org/abs/2302.1458

[3]Referring Multi-Object Tracking

paper:arxiv.org/abs/2303.0336

[4]Simple Cues Lead to a Strong Multi-Object Tracker

paper:arxiv.org/abs/2206.0465

图像处理(Image Processing

超分辨率(Super Resolution

[1]Denoising Diffusion Probabilistic Models for Robust Image Super-Resolution in the Wild(野外鲁棒图像超分辨率的去噪扩散概率模型

paper:arxiv.org/abs/2302.0786

project:sihyun.me/PVDM/

图像复原/图像增强/图像重建(Image Restoration/Image Reconstruction

[1]Learning Distortion Invariant Representation for Image Restoration from A Causality Perspective

paper:arxiv.org/abs/2303.0685

code:github.com/lixinustc/Ca

[2]DR2: Diffusion-based Robust Degradation Remover for Blind Face Restoration

paper:arxiv.org/abs/2303.0688


[3]Robust Unsupervised StyleGAN Image Restoration

paper:arxiv.org/abs/2302.0673

[4]Raw Image Reconstruction with Learned Compact Metadata

paper:arxiv.org/abs/2302.1299

[5]Efficient and Explicit Modelling of Image Hierarchies for Image Restoration

paper:arxiv.org/abs/2303.0074

code:github.com/ofsoundof/GR

[6]Imagic: Text-Based Real Image Editing with Diffusion Models

paper:arxiv.org/abs/2210.0927

project:imagic-editing.github.io

[7]High-resolution image reconstruction with latent diffusion models from human brain activity

paper:biorxiv.org/content/10.

project:sites.google.com/view/s

[8]Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models

paper:arxiv.org/abs/2211.1065

图像去噪/去模糊/去雨去雾(Image Denoising

[1]Uncertainty-Aware Unsupervised Image Deblurring with Deep Residual Prior

paper:arxiv.org/abs/2210.0536

[2]Polarized Color Image Denoising using Pocoformer

paper:arxiv.org/abs/2207.0021

[3]Blur Interpolation Transformer for Real-World Motion from Blur

paper:arxiv.org/abs/2211.1142

code:github.com/zzh-tech/BiT

[4]Structured Kernel Estimation for Photon-Limited Deconvolution

paper:arxiv.org/abs/2303.0347

code:github.com/sanghviyashi

图像编辑/图像修复(Image Edit/Inpainting

[1]LANIT: Language-Driven Image-to-Image Translation for Unlabeled Data

paper:arxiv.org/abs/2208.1488

code:github.com/KU-CVLAB/LAN

图像质量评估(Image Quality Assessment

[1]CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

paper:arxiv.org/abs/2112.0659

[2]Quality-aware Pre-trained Models for Blind Image Quality Assessment

paper:arxiv.org/abs/2303.0052

图像配准(Image Registration

[1]Indescribable Multi-modal Spatial Evaluator

paper:arxiv.org/abs/2303.0036

code:github.com/Kid-Liet/IMS

人脸(Face

人脸生成/合成/重建/编辑(Face Generation/Face Synthesis/Face Reconstruction/Face Editing

[1]A Hierarchical Representation Network for Accurate and Detailed Face Reconstruction from In-The-Wild Images

paper:arxiv.org/abs/2302.1443

[2]MetaPortrait: Identity-Preserving Talking Head Generation with Fast Personalized Adaptation(MetaPortrait:具有快速个性化适应的身份保持谈话头像生成

paper:arxiv.org/abs/2212.0806

code:github.com/Meta-Portrai

人脸伪造/反欺骗(Face Forgery/Face Anti-Spoofing

[1]Physical-World Optical Adversarial Attacks on 3D Face Recognition

paper:arxiv.org/abs/2205.1341

医学影像(Medical Imaging

[1]Deep Feature In-painting for Unsupervised Anomaly Detection in X-ray Images

paper:arxiv.org/pdf/2111.1349

code:github.com/tiangexiang/

[2]Label-Free Liver Tumor Segmentation

paper:arxiv.org/pdf/2210.1484

code:github.com/MrGiovanni/S

图像生成/图像合成(Image Generation/Image Synthesis

[1]DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation

paper:arxiv.org/abs/2208.1224

code:github.com/PaddlePaddle


[2]Progressive Open Space Expansion for Open-Set Model Attribution

paper:arxiv.org/abs/2303.0687

code:github.com/tianyunyoung

[3]Person Image Synthesis via Denoising Diffusion Model

paper:arxiv.org/abs/2211.1250

[4]Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models(使用预训练的 2D 扩散模型解决 3D 逆问题

paper:arxiv.org/abs/2211.1065

[5]Parallel Diffusion Models of Operator and Image for Blind Inverse Problems(盲反问题算子和图像的并行扩散模型

paper:arxiv.org/abs/2211.1065

场景重建/视图合成/新视角合成(Novel View Synthesis

[1]3D Video Loops from Asynchronous Input

paper:arxiv.org/abs/2303.0531

code:github.com/limacv/Video

[2]NeRFLiX: High-Quality Neural View Synthesis by Learning a Degradation-Driven Inter-viewpoint MiXer

paper:arxiv.org/abs/2303.0691

code:t.co/uNiTd9ujCv


[3]NeRF-Gaze: A Head-Eye Redirection Parametric Model for Gaze Estimation

paper:arxiv.org/abs/2212.1471

[4]Renderable Neural Radiance Map for Visual Navigation

paper:arxiv.org/abs/2303.0030

[5]Real-Time Neural Light Field on Mobile Devices

paper:arxiv.org/abs/2212.0805

project:snap-research.github.io

[6]Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures

paper:arxiv.org/abs/2211.0760

code:github.com/eladrich/lat

[7]NoPe-NeRF: Optimising Neural Radiance Field with No Pose Prior

paper:arxiv.org/abs/2212.0738

project:nope-nerf.active.vision

多模态学习(Multi-Modal Learning

[1]Align and Attend: Multimodal Summarization with Dual Contrastive Losses

paper:arxiv.org/abs/2303.0728

code:boheumd.github.io/A2Sum

[2]Towards All-in-one Pre-training via Maximizing Multi-modal Mutual Information(通过最大化多模态互信息实现一体化预训练

paper:arxiv.org/abs/2211.0980

code:github.com/OpenGVLab/M3

[3]Uni-Perceiver v2: A Generalist Model for Large-Scale Vision and Vision-Language Tasks(Uni-Perceiver v2:用于大规模视觉和视觉语言任务的通才模型

paper:arxiv.org/abs/2211.0980

code:github.com/fundamentalv

半监督学习/弱监督学习/无监督学习/自监督学习(Self-supervised Learning/Semi-supervised Learning)

[1]The Dialog Must Go On: Improving Visual Dialog via Generative Self-Training

paper:arxiv.org/abs/2205.1250

code:github.com/gicheonkang/

[2]Three Guidelines You Should Know for Universally Slimmable Self-Supervised Learning

paper:arxiv.org/abs/2303.0687

code:github.com/megvii-resea

[3]Mask3D: Pre-training 2D Vision Transformers by Learning Masked 3D Priors

paper:arxiv.org/abs/2302.1474

[4]Siamese Image Modeling for Self-Supervised Vision Representation Learning

paper:arxiv.org/abs/2206.0120

code:github.com/fundamentalv

[5]Cut and Learn for Unsupervised Object Detection and Instance Segmentation

paper:arxiv.org/abs/2301.1132

project:people.eecs.berkeley.edu

CVPR'23 最新 70 篇论文分方向整理|包含目标检测、图像处理、人脸、医学影像、半监督的评论 (共 条)

分享到微博请遵守国家法律