欢迎光临散文网 会员登陆 & 注册

基于虚拟几何环境的无人机地空信道预测方法附matlab代码

2023-10-16 23:27 作者:Matlab工程师  | 我要投稿

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

无人机通信技术是近年来备受关注的领域,其在军事、民用等领域都有广泛的应用。而在无人机通信中,地面终端与低空无人机之间的信道增益预测、无线中继规划和源定位等问题是需要解决的。本文提出了一种基于虚拟几何环境的无人机地空信道预测方法,旨在通过构建一张地空无人机信道增益预测地图,为无人机通信提供可靠的基础。

然而,由于信道预测地图数据点的维度较高,每个数据点都是6维的,其中发送器和接收器各有三个空间自由度,因此构建信道预测地图所需的测量样本不足,同时将大型信道预测地图传输或共享给移动决策者也是一项昂贵的任务。传统的方法,如k最近邻算法(KNN)和Kriging算法,可能因数据不足而失败。因此,本文提出了一种基于环境几何语义的传播特性的无人机地空信道预测方法,即通过重构虚拟几何环境来构建信道预测地图。

具体而言,本文开发了一个嵌入环境感知的多类虚拟障碍模型和多度信道模型,制定了一个最小二乘问题来学习虚拟障碍地图和模型参数。本文研究了最小二乘问题的部分拟凸性,并基于此开发了一种高效的无人机地空信道预测算法。此外,本文采用数据驱动方法构建了一个剩余阴影地图,以进一步提高构建的信道预测地图的细节。数值结果表明,与Kriging基线相比,本文提出的方法显著提高了预测精度,并将所需测量次数减少了一半以上。当构建的信道预测地图应用于基于接收信号强度(RSS)的定位时,在密集城市环境下实现了亚20米的精度,取得了显著的性能提升。

总之,本文提出的基于虚拟几何环境的无人机地空信道预测方法在无人机通信中具有重要的应用价值。其通过重构虚拟几何环境,构建了一张地空无人机信道增益预测地图,为无人机通信提供了可靠的基础,同时也为无人机通信领域的研究提供了新的思路和方法。

📣 部分代码

set(0,'defaultfigurecolor',[1 1 1])clear, close alladdpath Sub%rng('default')%% DATA COLLECTION --------------------------------------------------------% Topology parametersK_class = 2;sample_rate = 1;meter_pixel = 9;map_height = 50;    % Drone height for air-to-ground power mapsample_height = 50; % Drone height for learning (Learning stage)neighbour_mat = [0 0; -1 0; 0 -1; 1 0; 0 1] * 39; %neighbour_weight = [0.6; 0.1; 0.1; 0.1; 0.1]; % Sum-to-onetest_positions = round(1:100);noise_guass = 3; % dB stdn_ue = 50; % [8*8 9*10 11*11 13*13 15*16 18*18 21*22 25*26 30*30 35*36]*8n_uav = 50 * length(sample_height);    % 15:50:9 50:200:5 100:400n_mea = n_ue * n_uav;n_uav = round(n_uav / length(sample_height));residual_on = false;residsec_on = false;residthi_on = false;residfou_on = false;residfiv_on = true;segment_on = false;segresid_on = false;plot_on = false;kmeans_on = false;% DATA = load('radiomap_shanghai100tx_2.5GHz.mat');% DATA = load('radiomap_simulated100tx_noise.mat');% DATA = load('radiomap_shanghai115tx_28GHz.mat');% DATA = load('radiomap_simulated100tx_nonoise');DATA = load('radiomap_simulated100tx_3class.mat');pos_ue = DATA.PosUE;Xdata = zeros(n_mea, 6); Gdata = zeros(n_mea, 1);Ddata = zeros(n_mea, 1);Gtrue = cell(n_ue, 1);cnt = 0;figure(1)title("Users' locations")hold onpos_ue_all = zeros(size(pos_ue));userids = sort(randperm(length(pos_ue), n_ue));for id = 1:length(userids)    % i must increase    i = userids(id);    % Training data    for j = 1:length(sample_height)        uav_height = sample_height(j);        x = pos_ue(i,1); y = pos_ue(i,2); z = pos_ue(i,3);        I = (DATA.RadioMap(:, 6) == uav_height) ...            & (DATA.RadioMap(:, 1) == x) ...            & (DATA.RadioMap(:, 2) == y)...            & (DATA.RadioMap(:, 3) == z);        Rm2D = DATA.RadioMap(I, :);        Xvec = Rm2D(:, 4); Yvec = Rm2D(:, 5); Zvec = Rm2D(:, end);        [Xmat,Ymat] = meshgrid((min(Xvec):5:max(Xvec)),(min(Yvec):5:max(Yvec)));        Zmat = griddata(Xvec, Yvec, Zvec, Xmat, Ymat);        position = [x-min(Xvec)+1 y-min(Yvec)+1 z];        Xmat = Xmat - min(Xvec) + 1;        Ymat = Ymat - min(Yvec) + 1;        % Data pre-processing        Zmat(isnan(Zmat)) = min(min(Zmat));        Zmat = Zmat + randn(size(Zmat)) * noise_guass;        Xvec = Xmat(:);        Yvec = Ymat(:);        Zvec = Zmat(:);        dist = log10(vecnorm([Xvec Yvec uav_height*ones(length(Xvec),1)] - ...            ones(length(Xvec),3).*position, 2, 2));        position = [ceil(position(1:2)) z];        if ~exist('idx', 'var')            %idx = 1:ceil(length(Xvec)/nDrone):length(Xvec);            idx = randperm(length(Xvec), n_uav);        end        uav_positon = ceil([Xvec(idx) Yvec(idx)]);        uav_num = length(uav_positon);        cnt = cnt + uav_num;        Xdata(cnt-uav_num+1:cnt, :) = [uav_positon ...            uav_height.*ones(uav_num,1) ones(uav_num,3).*position];        Gdata(cnt-uav_num+1:cnt, :) = Zvec(idx);        Ddata(cnt-uav_num+1:cnt, :) = dist(idx);        figure(1)        plot(position(1), position(2), '.');        text(position(1), position(2), string(i));        pos_ue_all(i, :) = position;    end    % Test data    uav_height = map_height;    x = pos_ue(i,1); y = pos_ue(i,2); z = pos_ue(i,3);    I = (DATA.RadioMap(:, 6) == uav_height) ...        & (DATA.RadioMap(:, 1) == x) ...        & (DATA.RadioMap(:, 2) == y)...        & (DATA.RadioMap(:, 3) == z);    Rm2D = DATA.RadioMap(I, :);    Xvec = Rm2D(:, 4); Yvec = Rm2D(:, 5); Zvec = Rm2D(:, end);    [Xmat,Ymat] = meshgrid((min(Xvec):5:max(Xvec)),(min(Yvec):5:max(Yvec)));    Zmat = griddata(Xvec, Yvec, Zvec, Xmat, Ymat);    position = [x-min(Xvec)+1 y-min(Yvec)+1 z];    Xmat = Xmat - min(Xvec) + 1;    Ymat = Ymat - min(Yvec) + 1;    % Data pre-processing    Xvec = Xmat(:);    Yvec = Ymat(:);    Zvec = Zmat(:);    Zmat(isnan(Zmat)) = min(Zvec);    Gtrue{i} = Zmat;endlenx = ceil(max(Xvec)/meter_pixel);leny = ceil(max(Yvec)/meter_pixel);n_mea = cnt;Xdata = Xdata(1:cnt, :); Ydata = Gdata(1:cnt, :);Ddata = Ddata(1:cnt, :);maps.BldMapZ = zeros(lenx, leny);maps.BldPosMat = ones(lenx, leny);maps.FolPosMat = zeros(lenx, leny);maps.meterPerPixel = meter_pixel;% Generate collinear obstacles setobstacles = (1:lenx*leny)';nObst = length(obstacles);cols = cell(nObst, 2);   % collinear measurements of each obstaclecovB = cell(n_mea, 2);for id = 1:n_mea    uav_pos_meter = Xdata(id, 1:3);    uav_pos_pixel = [floor(uav_pos_meter(1:2)/meter_pixel)+1, uav_pos_meter(3)];    ue_pos_meter = Xdata(id, 4:6);    ue_pos_pixel = [floor(ue_pos_meter(1:2)/meter_pixel)+1, ue_pos_meter(3)];    [cov_bld, cov_z] = covBldZ(uav_pos_pixel, ue_pos_pixel, lenx);    cov_bld = cov_bld(cov_z > 0 & cov_z <= map_height);    cov_z = cov_z(cov_z > 0 & cov_z <= map_height);    covB{id, 1} = cov_bld;    covB{id, 2} = cov_z;    for i = 1:length(cov_bld)        j = cov_bld(i);        ib = find(obstacles == j, 1, 'first');        if ~isempty(ib)            if ~isempty(cols{ib, 1})                cols{ib, 1} = [cols{ib, 1} id];                cols{ib, 2} = [cols{ib, 2} cov_z(i)];            else                cols{ib, 1} = id;                cols{ib, 2} = cov_z(i);            end        end    endend%% LOCAL POLY RECONSTRUCTION ----------------------------------------------MAXLOOP = 9;tolerance = 1e-3;metrics = cell(MAXLOOP, 6);maps.droneHeightMap = map_height;maps.neighbourMat = neighbour_mat;maps.neighbourWeight = neighbour_weight;% InitializationR.X = Xdata;P = polyfit(Ddata, Ydata, 1);delta = Ydata - (P(1) * Ddata + P(2));w = delta > 0;W = [w w ~w ~w];A = [Ddata ones(n_mea, 1)];A_ = W .* [A A];X = (A_' * A_) \ A_' * Ydata;A = repmat(A, 1, K_class+1);R.Z1 = zeros(n_mea, K_class+1);R.Alpha = zeros(1, K_class+1);R.Beta = zeros(1, K_class+1);for k = 1:K_class+1    R.Alpha(k) = X(1) - (X(1) - X(3)) * ((k-1)/K_class);    R.Beta(k) = X(2) - (X(2) - X(4)) * ((k-1)/K_class);    R.Z1(:, k) = -abs(Ydata-(R.Alpha(k)*Ddata+R.Beta(k)));end% -- coarse resolution --dsfactor = 4;       % Downsampling factor[small_maps, S, Hs] = downsampleMaps(maps, dsfactor, R);R.Hs = Hs; R.S = S;smap_hat = ones([K_class numel(small_maps.BldMapZ)]) * map_height;for i = 1:MAXLOOP    [smap_hat, W] = optimizeH(R, small_maps, smap_hat);    A_ = W .* A;    X = (A_' * A_) \ A_' * Ydata;    R.Alpha = X(1:2:end);    R.Beta = X(2:2:end);    for k = 1:K_class+1        R.Z1(:, k) = -abs(Ydata-(R.Alpha(k)*Ddata+R.Beta(k)));    endend% -- medium resolution --dsfactor2 = 2;  [medium_maps, S, Hs] = downsampleMaps(maps, dsfactor2, R);R.Hs = Hs; R.S = S;mmap_hat = zeros([K_class numel(medium_maps.BldMapZ)]);for k = 1:K_class    upsample_matrix = repelem(reshape(smap_hat(k, :), ...        size(small_maps.BldMapZ)), round(dsfactor/dsfactor2), ...        round(dsfactor/dsfactor2));    mmap_hat(k, :) = vec(upsample_matrix(1:size(medium_maps.BldMapZ, 1),...        1:size(medium_maps.BldMapZ, 2)));endfor i = 1:MAXLOOP    [mmap_hat, W] = optimizeH(R, medium_maps, mmap_hat);    A_ = W .* A;    X = (A_' * A_) \ A_' * Ydata;    R.Alpha = X(1:2:end);    R.Beta = X(2:2:end);    for k = 1:K_class+1        R.Z1(:, k) = -abs(Ydata-(R.Alpha(k)*Ddata+R.Beta(k)));    endend% -- fine resolution (3 meter) --dsfactor3 = 1;[maps, S, Hs] = downsampleMaps(maps, dsfactor3, R);R.Hs = Hs; R.S = S;map_hat = zeros([K_class numel(maps.BldMapZ)]);for k = 1:K_class    upsample_matrix = repelem(reshape(mmap_hat(k, :), ...        size(medium_maps.BldMapZ)), round(dsfactor2/dsfactor3), ...        round(dsfactor2/dsfactor3));    map_hat(k, :) = vec(upsample_matrix(1:size(maps.BldMapZ, 1),...        1:size(maps.BldMapZ, 2)));endh  = waitbar(0, 'Estimate building heights');for i = 1:MAXLOOP    waitbar(i / MAXLOOP, h);    [map_hat, W] = optimizeH(R, maps, map_hat);    A_ = W .* A;    X = (A_' * A_) \ A_' * Ydata;    R.Alpha = X(1:2:end);    R.Beta = X(2:2:end);    for k = 1:K_class+1        R.Z1(:, k) = -abs(Ydata-(R.Alpha(k)*Ddata+R.Beta(k)));    endendclose(h);% hf = showmap(BldMapHat + FolMapHat, Maps.meterPerPixel, 8);% title('Esitmated building and foliage height');if kmeans_on == true    c_i = D1 ./ abs((X(1)*Ddata+X(2)) - (X(3)*Ddata+X(4)));    obs_clu = zeros(nObst, map_height);    for i = 1:map_height        for j = 1:nObst            obs_clu(j, i) = mean(c_i(cols{j, 1}(ceil(cols{j, 2}) == i)));        end    end    obs_clu(isnan(obs_clu)) = 0;    bld_ind = zeros(lenx, leny);    bld_ind(maps.BldPosMat > 0) = kmeans(obs_clu, 5);endfigure, hold onfor k = 1:K_class+1    plot(Ddata(W(:, 2*k) > 1/(K_class+1)), ...        Ydata(W(:, 2*k) > 1/(K_class+1)), '.', 'Color', rand([1 3]));endfigure, hold onfor k = K_class+1:-1:1    plot(Ddata(W(:, 2*k) > 1/(K_class+1)), ...        Ydata(W(:, 2*k) > 1/(K_class+1)), '.', 'Color', rand([1 3]));endif isfield(DATA, 'BldPosMat')    k = K_class;    map_hat(k, DATA.BldPosMat(round(1:DATA.lenX/lenx:DATA.lenX), ...        round(1:DATA.lenY/leny:DATA.lenY)) < 1) = 0;endheights = reshape(map_hat(K_class, :), size(maps.BldMapZ));for i = 1:length(pos_ue_all)    x = round(pos_ue_all(i, 1) / meter_pixel);    y = round(pos_ue_all(i, 2) / meter_pixel);    if x == 0 || y == 0, continue, end    heights(x, y) = 0;end% heights(heights >= droneHeightMap | heights == droneHeightMap/2) = 0;% indicator = heights >= UserHeight;% heights = medfilt1(heights .* (heights <= DroneHeight)) .* indicator;figure; showmap(heights, meter_pixel);title(sprintf('Height from L model at %d meters', round(map_height)));uav_num = uav_num * length(sample_height);%% RADIOMAP AND PERFORMANCE -----------------------------------------------% Channel model C.A1 = X(1); C.B1 = X(2); C.S1 = 0;C.A2 = 0; C.B2 = 0; C.S2 = 0; C.A3 = X(3); C.B3 = X(4); C.S3 = 0;channel_model.C = C;channel_model.los_nlos_trans = 0;channel_model.noise = 0;metrics_mse = []; metrics_mae = [];XYkr = [vec(meshgrid(1:lenx, 1:leny)'), vec(meshgrid(1:leny, 1:lenx)), ...    ones(lenx * leny, 1) * map_height / meter_pixel];Xann = [vec(meshgrid(1:lenx, 1:leny)'), vec(meshgrid(1:leny, 1:lenx)) ...    * meter_pixel, ones(lenx * leny, 1) * map_height];net = fitnet([32 32 16 16 8 8 4 4]); %fitnet([(4:8).^2 (8:-1:2).^2]);net = train(net, [Xdata Ddata X(1)*Ddata+X(2) X(3)*Ddata+X(4)]', Ydata', ...    'useParallel', 'no', 'showResources', 'no');j = 1;for i = 1:length(pos_ue)    if pos_ue_all(i, 1) == 0 || pos_ue_all(i, 2) == 0, continue, end    if ~ismember(i, test_positions), j = j + 1; continue, end    Gtru = Gtrue{i}';    % Radiomap reconstruction    Xdata_i = [Xdata((j-1)*uav_num+1:j*uav_num,1:2)/meter_pixel, ...        Xdata((j-1)*uav_num+1:j*uav_num,3)/meter_pixel];    Ydata_i = Ydata((j-1)*uav_num+1:j*uav_num);    idx = randperm(length(Xdata_i), round(length(Xdata_i) / sample_rate));    Xdata_i = Xdata_i(idx, :); Ydata_i = Ydata_i(idx, :);    d_variogram = variogram(Xdata_i(:, 1:2), Ydata_i);    [~, ~, ~, vstruct] = variogramfit(d_variogram.distance, d_variogram.val, ...        [], [], [], 'model', 'exponential', 'plotit', false);    if n_mea > 1e9        idx = randperm(length(Xdata_i), round(length(Xdata_i) / sample_rate));        Gkri = kriging(vstruct,Xdata_i(idx,:),false,Ydata_i(idx),XYkr,false);    else        idx = randperm(length(Xdata), round(length(Xdata) / sample_rate));        Gkri = kriging(vstruct, Xdata(idx,:)/meter_pixel, false, Ydata(idx), ...        [XYkr ones(length(XYkr), 3).*pos_ue_all(i, :)/meter_pixel], false);    end    Xann_upos = ones(length(XYkr), 3).*pos_ue_all(i, :);    Xann_dist = log10(vecnorm(Xann - Xann_upos, 2, 2));    Xann_features = [Xann Xann_upos ...        Xann_dist X(1)*Xann_dist+X(2) X(3)*Xann_dist+X(4)]';    Gann = net(Xann_features);    Gann = reshape(Gann, [lenx leny]);    Gkri = reshape(Gkri, [lenx leny]);    Gknn = powerMapReconKNN(R,Ydata,pos_ue_all(i, :),map_height,maps);    Gbld = powerMapReconBld(R,heights,heights,pos_ue_all(i, :),map_height,maps);    Gbdk = powerMapReconKBld(R, map_hat, pos_ue_all(i, :), map_height, maps);    % Radiomap reconstruction with residual    if residual_on == true    [~, id] = min(abs(sample_height - map_height));    droneHeightRes = sample_height(id)/meter_pixel;    ResX = floor(Xdata_i(:, 1:2)) + 1;    ResX = ResX(Xdata_i(:, 3) == droneHeightRes, :);    ResG = Ydata_i(Xdata_i(:, 3) == droneHeightRes);    Gbld = powerMapReconBld(R,heights,heights,pos_ue_all(i, :),map_height,maps);    Gbld = imgaussfilt(Gbld, 1);    for k = 1:length(ResX)        ResG(k) = ResG(k) - Gbld(ResX(k, 1), ResX(k, 2));    end    d_variogram = variogram(ResX, ResG);    [~, ~, ~, vstruct] = variogramfit(d_variogram.distance, d_variogram.val, ...        [], [], [], 'model', 'exponential', 'plotit', false);    Rkri = kriging(vstruct, ResX(:,1), ResX(:,2), ...        ResG, meshgrid(1:lenx, 1:leny)', meshgrid(1:leny, 1:lenx));    Gbld = Gbld + reshape(Rkri, [lenx leny]);    end    if residsec_on == true    ResX = Xdata / meter_pixel;    P = (X(1)*Ddata + X(2) - Ydata)./(X(1)*Ddata + X(2) - X(3)*Ddata - X(4));    P(P < 0) = 0; P(P > 1) = 1;    ResG = Ydata - w1.*(X(1)*Ddata + X(2)) - w2.*(X(3)*Ddata + X(4));    d_variogram = variogram(Xdata((j-1)*uav_num+1:j*uav_num,1:2)/meter_pixel, ...        Ydata((j-1)*uav_num+1:j*uav_num));    [~, ~, ~, vstruct] = variogramfit(d_variogram.distance, d_variogram.val, ...        [], [], [], 'model', 'exponential', 'plotit', false);    ResRec = kriging(vstruct, ResX, false, ResG, ...    [XYkr ones(length(XYkr), 3).*pos_ue_all(i, :)/meter_pixel], false);    ResRec = reshape(ResRec, [lenx leny]);    Gbld = Gbld + ResRec;    end    if residthi_on == true    Rind = true(length(ResX), 1);    for k = 1:length(ResX)        ResG(k) = ResG(k) - Gbld(ResX(k, 1), ResX(k, 2));        Rind(k) = Gind(ResX(k, 1), ResX(k, 2));    end    d_variogram = variogram(ResX(Rind,:), ResG(Rind));    [~, ~, ~, vstruct] = variogramfit(d_variogram.distance, d_variogram.val, ...        [], [], [], 'model', 'exponential', 'plotit', false);    LOSSeg = kriging(vstruct, ResX(Rind,1), ResX(Rind,2), ...        ResG(Rind), meshgrid(1:lenx, 1:leny)', meshgrid(1:leny, 1:lenx));    d_variogram = variogram(ResX(~Rind,:), ResG(~Rind));    [~, ~, ~, vstruct] = variogramfit(d_variogram.distance, d_variogram.val, ...        [], [], [], 'model', 'exponential', 'plotit', false);    NLOSSeg = kriging(vstruct, ResX(~Rind,1), ResX(~Rind,2), ...        ResG(~Rind), meshgrid(1:lenx, 1:leny)', meshgrid(1:leny, 1:lenx));    Gbld = Gbld + LOSSeg .* Gind + NLOSSeg .* ~Gind;    end    if residfou_on == true    ResY = []; ResR = [];    for id = 1:length(sample_height)        h = sample_height(id)/meter_pixel;        ResX = [floor(Xdata_i(:, 1:2)) + 1 Xdata_i(:, 3)];        ResX = ResX(Xdata_i(:, 3) == h, :);        ResG = Ydata_i(Xdata_i(:, 3) == h);        Gbld = powerMapReconBld(R,heights,heights,pos_ue_all(i, :),h,maps);        Gbld = imgaussfilt(Gbld, 3);        for k = 1:length(ResX)            ResG(k) = ResG(k) - Gbld(ResX(k, 1), ResX(k, 2));        end        x = ResX(:, 1) - pos_ue_all(i, 1)/meter_pixel;        y = ResX(:, 2) - pos_ue_all(i, 2)/meter_pixel;        h = h/meter_pixel - pos_ue_all(i, 3)/meter_pixel;        l = vecnorm([x y], 2, 2);        theta1 = atan2(y,x); theta2 = atan2(h,l);        ResR = [ResR; min(theta1+pi,pi-theta1)/pi*180 ...            min(theta2+pi,pi-theta2)/pi*180 sqrt(l.^2 + h^2)];        ResY = [ResY; ResG];    end    d_variogram = variogram(ResR, ResY);    [~, ~, ~, vstruct] = variogramfit(d_variogram.distance, d_variogram.val, ...        [], [], [], 'model', 'exponential', 'plotit', false);    Rkri = krigingR(vstruct, Xdata((j-1)*uav_num+1:j*uav_num,1:3)/ ...        meter_pixel, ResY, XYkr, pos_ue_all(i, :)/meter_pixel);    Gbld = powerMapReconBld(R,heights,heights,pos_ue_all(i, :),map_height,maps);    Gbld = imgaussfilt(Gbld, 3) + reshape(Rkri, [lenx leny]);    end    if residfiv_on == true    [~, id] = min(abs(sample_height - map_height));    droneHeightRes = sample_height(id)/meter_pixel;    ResX = floor(Xdata_i(:, 1:2)) + 1;    ResX = ResX(Xdata_i(:, 3) == droneHeightRes, :);    ResG = Ydata_i(Xdata_i(:, 3) == droneHeightRes);    Gind = powMapRecBldSof(R,heights,[],pos_ue_all(i, :),map_height,maps,[]);    Gind = imgaussfilt(Gind, 3);    Glos = powMapRecBldSof(R,heights-realmax,[],pos_ue_all(i, :),map_height,maps);    Gnlo = powMapRecBldSof(R,heights+realmax,[],pos_ue_all(i, :),map_height,maps);    Gbld = Gind .* Glos + (1 - Gind) .* Gnlo;    Gbdn = Gbld;    for k = 1:length(ResX)        ResG(k) = ResG(k) - Gbld(min(lenx, ResX(k, 1)), min(leny, ResX(k, 2)));    end    d_variogram = variogram(ResX, ResG);    [~, ~, ~, vstruct] = variogramfit(d_variogram.distance, d_variogram.val, ...        [], [], [], 'model', 'exponential', 'plotit', false);    Rkri = kriging(vstruct, ResX(:,1), ResX(:,2), ...        ResG, meshgrid(1:lenx, 1:leny)', meshgrid(1:leny, 1:lenx));    Gbld = Gbld + reshape(Rkri, [lenx leny]);    end    % Radiomap reconstruction with segmentation    if segment_on == true    d_variogram = variogram(Xdata(w1, :)/meter_pixel, Ydata(w1));    [~, ~, ~, vstruct] = variogramfit(d_variogram.distance, d_variogram.val, ...        [], [], [], 'model', 'exponential', 'plotit', false);    LOSSeg = kriging(vstruct,Xdata(w1, :)/meter_pixel, false, Ydata(w1), ...        [XYkr ones(length(XYkr), 3).*pos_ue_all(i, :)/meter_pixel], false);    d_variogram = variogram(Xdata(w2, :)/meter_pixel, Ydata(w2));    [~, ~, ~, vstruct] = variogramfit(d_variogram.distance, d_variogram.val, ...        [], [], [], 'model', 'exponential', 'plotit', false);    NLOSSeg = kriging(vstruct,Xdata(w2, :)/meter_pixel, false, Ydata(w2), ...        [XYkr ones(length(XYkr), 3).*pos_ue_all(i, :)/meter_pixel], false);    LOSSeg = reshape(LOSSeg, [lenx leny]);    NLOSSeg = reshape(NLOSSeg, [lenx leny]);    Gind = powerMapReconBld(R,heights,heights,pos_ue_all(i, :),map_height,maps,1);    Gbld = LOSSeg .* Gind + NLOSSeg .* ~Gind;    end    % Radiomap reconstruction with residual and segmentation    if segresid_on == true    Xlos = Xdata(w1, :) / meter_pixel;    Ylos = Ydata(w1) - Ddata(w1) * X(1) - X(2);    Xnlos = Xdata(w2, :) / meter_pixel;    Ynlos = Ydata(w2) - Ddata(w2) * X(3) - X(4);    d_variogram = variogram(Xlos, Ylos);    [~, ~, ~, vstruct] = variogramfit(d_variogram.distance, d_variogram.val, ...        [], [], [], 'model', 'exponential', 'plotit', false);    LOSSeg = kriging(vstruct, Xlos, false, Ylos, ...        [XYkr ones(length(XYkr), 3).*pos_ue_all(i, :)/meter_pixel], false);    d_variogram = variogram(Xnlos, Ynlos);    [~, ~, ~, vstruct] = variogramfit(d_variogram.distance, d_variogram.val, ...        [], [], [], 'model', 'exponential', 'plotit', false);    NLOSSeg = kriging(vstruct, Xnlos, false, Ynlos, ...        [XYkr ones(length(XYkr), 3).*pos_ue_all(i, :)/meter_pixel], false);    LOSSeg = reshape(LOSSeg, [lenx leny]);    NLOSSeg = reshape(NLOSSeg, [lenx leny]);    Gind = powerMapReconBld(R,heights,heights,pos_ue_all(i, :),map_height,maps,1);    Gbld = Gbld + LOSSeg .* Gind + NLOSSeg .* ~Gind;    end    % Performance and figures    xm = length(Zmat);    if xm <= lenx        Gbld = Gbld(round(1:lenx/xm:lenx),round(1:lenx/xm:lenx));        Gkri = Gkri(round(1:lenx/xm:lenx),round(1:lenx/xm:lenx));        Gknn = Gknn(round(1:lenx/xm:lenx),round(1:lenx/xm:lenx));        Gann = Gann(round(1:lenx/xm:lenx),round(1:lenx/xm:lenx));        Gbdk = Gbdk(round(1:lenx/xm:lenx),round(1:lenx/xm:lenx));    else        Gtru = Gtru(round(1:xm/lenx:xm),round(1:xm/lenx:xm));    end    if plot_on == true    figure(300 + i);    subplot(2, 3, 1); showmap(Gkri, meter_pixel);    subplot(2, 3, 2); showmap(Gknn, meter_pixel);    subplot(2, 3, 3); showmap(Gann, meter_pixel);    subplot(2, 3, 4); showmap(Gbdk, meter_pixel);    subplot(2, 3, 5); showmap(Gbld, meter_pixel);    subplot(2, 3, 6); showmap(Gtru, meter_pixel);    % figure(400 + i); showmap(reshape(Rkri, [lenX lenY]), 9);    disp_str = strcat('Position ',string(i),': ',string(mean(abs(vec(...        Gtru-Gkri)))),' vs. ',string(mean(abs(vec(Gtru-Gknn)))),' vs. ',...        string(mean(abs(vec(Gtru-Gbld)))),'; ',string(mse(Gtru-Gkri)),...        ' vs. ',string(mse(Gtru-Gknn)),' vs. ',string(mse(Gtru-Gbld)));    disp(disp_str); input('');    end    metrics_mse = [metrics_mse; mse(Gtru-Gkri) mse(Gtru-Gknn) ...        mse(Gtru-Gann) mse(Gtru-Gbdk) mse(Gtru-Gbld)];    metrics_mae = [metrics_mae; mean(abs(vec(Gtru-Gkri))) ...        mean(abs(vec(Gtru-Gknn))) mean(abs(vec(Gtru-Gann))) ...        mean(abs(vec(Gtru-Gbdk))) mean(abs(vec(Gtru-Gbld)))];    j = j + 1;enddisp([mean(metrics_mae, 1) mean(metrics_mse, 1) n_ue]);

⛳️ 运行结果

🔗 参考文献


🎈 部分理论引用网络文献,若有侵权联系博主删除

🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合




基于虚拟几何环境的无人机地空信道预测方法附matlab代码的评论 (共 条)

分享到微博请遵守国家法律