欢迎光临散文网 会员登陆 & 注册

圆锥曲线的斜率问题

2022-08-12 17:20 作者:因恋相思久  | 我要投稿

如图,已知圆O : x%5E2%2B%20y%5E2%20%3D4,点B(1,0),以线段AB为直径的圆内切于圆0,点A的集合记为曲线C.

(1)求曲线C的方程;

(2)已知直线l%EF%BC%9Ax%3D4Q(1%2C%5Cfrac%7B3%7D%7B2%7D%20),过点B的直线l_%7B1%7D%20与C交于M , N 两点,与直线l交于点K,记QM%2CQN%2CQK 的斜率分别为k_%7B1%7D%20%EF%BC%8Ck_%7B2%7D%20%EF%BC%8Ck_%7B3%7D%20问:%5Cfrac%7Bk_%7B1%7D-%20k_%7B2%7D%20%7D%7Bk_%7B2%7D-%20k_%7B3%7D%20%7D%20是否为定值?若是,给出证明,并求出定值:若不是,说明理由.

(1)设AB的中点为P ,切点为Q,连接OP,PQ,取B关于y轴的对称点D,连接AD,则%5Cvert%20AD%20%5Cvert%20%3D2%5Cvert%20OP%5Cvert%20

%5Cvert%20AB%20%5Cvert%2B%20%5Cvert%20AD%20%5Cvert%3D%202%5Cvert%20OP%20%5Cvert%2B2%20%5Cvert%20PB%20%5Cvert%20%3D2%5Cvert%20OP%20%5Cvert%2B%202%5Cvert%20PQ%5Cvert%20

%3D2(%5Cvert%20OP%20%5Cvert%2B%20%5Cvert%20PQ%20%5Cvert)%20%3D4%EF%BC%9E%5Cvert%20BD%20%5Cvert%20%3D2

所以点A的轨迹是以B,D为焦点,长轴长为4的椭圆其中a =2, c = 1, b =%5Csqrt%7B3%7D%20.则曲线C的方程为

%5Cfrac%7Bx%5E2%7D%7B4%7D%20%2B%5Cfrac%7By%5E2%20%7D%7B3%7D%20%3D1

(2)设%E7%9B%B4%E7%BA%BFMN%EF%BC%9Any%2B1%3DxM(x_%7B1%7D%EF%BC%8C%20y_%7B1%7D%20)%EF%BC%8CN(x_%7B2%7D%EF%BC%8C%20y_%7B2%7D%20)

因此有K%EF%BC%884%EF%BC%8C%5Cfrac%7B3%7D%7Bn%7D%20%EF%BC%89k_%7B3%7D%20%3D%5Cfrac%7B%5Cfrac%7B3%7D%7Bn%7D-%5Cfrac%7B3%7D%7B2%7D%20%20%7D%7B4-1%7D%20%3D%5Cfrac%7B1%7D%7Bn%7D%20-%5Cfrac%7B1%7D%7B2%7D%20

k_%7B1%7D%20%3D%5Cfrac%7By_%7B1%7D%20-%5Cfrac%7B3%7D%7B2%7D%20%7D%7Bx_%7B1%7D%20-1%7D%20%3D%5Cfrac%7By_%7B1%7D%20-%5Cfrac%7B3%7D%7B2%7D%7D%7Bny_%7B1%7D%20%7D%20

k_%7B2%7D%20%3D%5Cfrac%7By_%7B2%7D%20-%5Cfrac%7B3%7D%7B2%7D%20%7D%7Bx_%7B2%7D%20-1%7D%20%3D%5Cfrac%7By_%7B2%7D%20-%5Cfrac%7B3%7D%7B2%7D%7D%7Bny_%7B2%7D%20%7D%20

k_%7B1%7D%2B%20k_%7B2%7D%20%3D%5Cfrac%7B2y_%7B1%7D%20y_%7B2%7D-%5Cfrac%7B3%7D%7B2%7D%20%EF%BC%88y_%7B1%7D%2B%20y_%7B2%7D%20%EF%BC%89%20%7D%7Bny_%7B1%7D%20y_%7B2%7D%20%7D%3D%5Cfrac%7B2%7D%7Bn%7D-%20%20%5Cfrac%7B3(y_%7B1%7D%20%2By_%7B2%7D%20)%7D%7B2ny_%7B1%7D%20y_%7B2%7D%20%7D%20

3x%5E2%2B%204y%5E2%3D12%E4%B8%8Eny%2B1%3Dx%E8%81%94%E7%AB%8B

%EF%BC%883n%5E2%2B4%EF%BC%89y%5E2%2B6ny-9%3D0

y_%7B1%7D%2B%20y_%7B2%7D%20%3D-%5Cfrac%7B6n%7D%7B3n%5E2%2B4%20%7D%20y_%7B1%7D%20y_%7B2%7D%20%3D-%5Cfrac%7B9%7D%7B3n%5E2%2B4%20%7D%20

因此3%EF%BC%88y_%7B1%7D%20%2By_%7B2%7D%20%EF%BC%89%3D2ny_%7B1%7D%20y_%7B2%7D%20

%20%20%5Cfrac%7B3(y_%7B1%7D%20%2By_%7B2%7D%20)%7D%7B2ny_%7B1%7D%20y_%7B2%7D%20%7D%20%3D1

所以k_%7B1%7D%2B%20k_%7B2%7D%20%3D%5Cfrac%7B2%7D%7Bn%7D%20-1%3D2k_%7B3%7D%20

k_%7B1%7D%20-k_%7B2%7D%20%3D-2(k_%7B2%7D%20-k_%7B3%7D%20)

所以%5Cfrac%7Bk_%7B1%7D-%20k_%7B2%7D%20%7D%7Bk_%7B2%7D-%20k_%7B3%7D%20%7D%20%3D-2为定值

下面进行系统化:

已知椭圆%5Cfrac%7Bx%5E2%20%7D%7Ba%5E2%20%7D%2B%20%5Cfrac%7By%5E2%20%7D%7Bb%5E2%20%7D%20%3D1%EF%BC%88a%EF%BC%9Eb%EF%BC%9E0%EF%BC%89,直线l_%7B1%7D%20%3Ax%3D%5Cfrac%7Ba%5E2%20%7D%7Bc%7D%20F%EF%BC%88c%EF%BC%8C0%EF%BC%89%EF%BC%8CQ%EF%BC%88c%EF%BC%8Ct%EF%BC%89t%5Cneq%200,过点F的直线l_%7B1%7D%20与椭圆交于M , N 两点,与直线l_%7B1%7D%20交于点K,记QM%2CQN%2CQK 的斜率分别为k_%7B1%7D%20%EF%BC%8Ck_%7B2%7D%20%EF%BC%8Ck_%7B3%7D%20

%E7%9B%B4%E7%BA%BFMN%EF%BC%9Any%2Bc%3Dx%EF%BC%8CM(x_%7B1%7D%EF%BC%8C%20y_%7B1%7D%20)%EF%BC%8CN(x_%7B2%7D%EF%BC%8C%20y_%7B2%7D%20)

因此有K%EF%BC%88%5Cfrac%7Ba%5E2%20%7D%7Bc%7D%20%EF%BC%8C%5Cfrac%7Bb%5E2%20%20%7D%7Bnc%7D%20%EF%BC%89k_%7B3%7D%20%3D%5Cfrac%7B%5Cfrac%7Bb%5E2%20%7D%7Bnc%7D%20-t%7D%7B%5Cfrac%7Ba%5E2%20%7D%7Bc%7D-c%20%7D%20%3D%5Cfrac%7B%5Cfrac%7Bb%5E2%20%7D%7Bnc%7D%20-t%7D%7B%5Cfrac%7Bb%5E2%20%7D%7Bc%7D%20%20%7D%3D%5Cfrac%7B1%7D%7Bn%7D%20-%5Cfrac%7Btc%7D%7Bb%5E2%20%7D%20

k_%7B1%7D%20%3D%5Cfrac%7By_%7B1%7D%20-t%7D%7Bx_%7B1%7D%20-c%7D%20%3D%5Cfrac%7By_%7B1%7D%20-t%7D%7Bny_%7B1%7D%20%7D%20

k_%7B2%7D%20%3D%5Cfrac%7By_%7B2%7D%20-t%20%7D%7Bx_%7B2%7D%20-c%7D%20%3D%5Cfrac%7By_%7B2%7D%20-t%7D%7Bny_%7B2%7D%20%7D%20

k_%7B1%7D%2B%20k_%7B2%7D%20%3D%5Cfrac%7B2y_%7B1%7D%20y_%7B2%7D-t%EF%BC%88y_%7B1%7D%2B%20y_%7B2%7D%EF%BC%89%20%7D%7Bny_%7B1%7D%20y_%7B2%7D%7D%20%3D%5Cfrac%7B2%7D%7Bn%7D%20-%5Cfrac%7Bt%EF%BC%88y_%7B1%7D%2B%20y_%7B2%7D%EF%BC%89%7D%7Bny_%7B1%7D%20y_%7B2%7D%7D%20

b%5E2%20x%5E2%2B%20a%5E2%20y%5E2%3Da%5E2%20b%5E2%20%E4%B8%8Eny%2Bc%3Dx%E8%81%94%E7%AB%8B

%EF%BC%88n%5E2%20b%5E2%2Ba%5E2%20%EF%BC%89y%5E2%2B2ncb%5E2y-b%5E4%3D0

y_%7B1%7D%2B%20y_%7B2%7D%20%3D-%5Cfrac%7B2ncb%5E2%20%7D%7Ba%5E2%2B%20n%5E2%20b%5E2%20%7D%20y_%7B1%7D%20y_%7B2%7D%20%3D-%5Cfrac%7Bb%5E4%20%7D%7Ba%5E2%2B%20n%5E2%20b%5E2%20%7D%20

因此b%5E2%20%EF%BC%88y_%7B1%7D%20%2By_%7B2%7D%20%EF%BC%89%3D2ncy_%7B1%7D%20y_%7B2%7D%20

%5Cfrac%7B(y_%7B1%7D%20%2By_%7B2%7D%20)%7D%7Bny_%7B1%7D%20y_%7B2%7D%20%7D%20%3D%5Cfrac%7B2c%7D%7Bb%5E2%20%7D%20

所以k_%7B1%7D%2B%20k_%7B2%7D%20%3D%5Cfrac%7B2%7D%7Bn%7D%20-%5Cfrac%7Bt%EF%BC%88y_%7B1%7D%2B%20y_%7B2%7D%EF%BC%89%7D%7Bny_%7B1%7D%20y_%7B2%7D%7D%20%3D%5Cfrac%7B2%7D%7Bn%7D%20-%5Cfrac%7B2tc%7D%7Bb%5E2%20%7D%20%3D2k_%7B3%7D%20

最后,善于利用结论来猜测结果去推导是很重要的方法

圆锥曲线的斜率问题的评论 (共 条)

分享到微博请遵守国家法律