欢迎光临散文网 会员登陆 & 注册

务必注意渐近线(2018课标Ⅲ(文)导数)

2022-09-29 12:55 作者:数学老顽童  | 我要投稿

(2018课标Ⅲ文,21)已知函数f%5Cleft(%20x%20%5Cright)%20%3D%5Cfrac%7Bax%5E2%2Bx-1%7D%7B%5Cmathrm%7Be%7D%5Ex%7D.

(1)求曲线y%3Df%5Cleft(%20x%20%5Cright)%20在点%5Cleft(%200%2C-1%20%5Cright)%20处的切线方程;

(2)证明:当a%5Cgeqslant%201时,f%5Cleft(%20x%20%5Cright)%20%2B%5Cmathrm%7Be%7D%5Cgeqslant%200.

解:(1)求导,得

%5Cbegin%7Baligned%7D%0A%09%5Ccolor%7Bred%7D%7Bf'%5Cleft(%20x%20%5Cright)%7D%20%26%3D%5Cfrac%7B%5Cleft(%202ax%2B1%20%5Cright)%20%5Cmathrm%7Be%7D%5Ex-%5Cleft(%20ax%5E2%2Bx-1%20%5Cright)%20%5Cmathrm%7Be%7D%5Ex%7D%7B%5Cleft(%20%5Cmathrm%7Be%7D%5Ex%20%5Cright)%20%5E2%7D%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B-%5Cleft(%20ax%2B1%20%5Cright)%20%5Cleft(%20x-2%20%5Cright)%7D%7B%5Cmathrm%7Be%7D%5Ex%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

所以点%5Cleft(%200%2C-1%20%5Cright)%20处的切线斜率为f'%5Cleft(%200%20%5Cright)%20%3D%5Ccolor%7Bred%7D%7B2%7D

所以该点处的切线方程为

y-%5Cleft(%20-1%20%5Cright)%20%3D2%5Ccdot%20%5Cleft(%20x-0%20%5Cright)%20

化简得%5Ccolor%7Bred%7D%7By%3D2x-1%7D.

(2)当a%5Cgeqslant%201时,

%5Ccolor%7Bred%7D%7Bf%5Cleft(%20x%20%5Cright)%20%2B%5Cmathrm%7Be%7D%5Cgeqslant%20%5Cfrac%7Bx%5E2%2Bx-1%7D%7B%5Cmathrm%7Be%7D%5Ex%7D%2B%5Cmathrm%7Be%7D%7D

欲证f%5Cleft(%20x%20%5Cright)%20%2B%5Cmathrm%7Be%7D%5Cgeqslant%200

只需证%5Ccolor%7Bred%7D%7B%5Cfrac%7Bx%5E2%2Bx-1%7D%7B%5Cmathrm%7Be%7D%5Ex%7D%2B%5Cmathrm%7Be%7D%5Cgeqslant%200%7D.

g%5Cleft(%20x%20%5Cright)%20%3D%5Cfrac%7Bx%5E2%2Bx-1%7D%7B%5Cmathrm%7Be%7D%5Ex%7D%2B%5Cmathrm%7Be%7D

g'%5Cleft(%20x%20%5Cright)%20%3D%5Cfrac%7B-%5Cleft(%20x%2B1%20%5Cright)%20%5Cleft(%20x-2%20%5Cright)%7D%7B%5Cmathrm%7Be%7D%5Ex%7D

g'%5Cleft(%20x%20%5Cright)%20%3D0,得x%3D-1x%3D2

x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%20-%5Cinfty%20%2C-1%20%5Cright)%20%7D,g'%5Cleft(%20x%20%5Cright)%20%3C0,g%5Cleft(%20x%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Csearrow%20%7D;

x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%20-1%2C2%20%5Cright)%20%7D,g'%5Cleft(%20x%20%5Cright)%20%3E0,g%5Cleft(%20x%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Cnearrow%20%7D;

x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%202%2C%2B%5Cinfty%20%5Cright)%20%7D,g'%5Cleft(%20x%20%5Cright)%20%3C0,g%5Cleft(%20x%20%5Cright)%5Ccolor%7Bred%7D%7B%20%5Csearrow%20%7D.

g%5Cleft(%20x%20%5Cright)%20x%3D-1处取得极小值,

x%3D2处取得极大值.

x%5Cin%20%5Cleft(%20-%5Cinfty%20%2C2%20%5Cright%5D%20g%5Cleft(%20x%20%5Cright)%20%5Cgeqslant%20g%5Cleft(%20-1%20%5Cright)%20%3D0

x%5Cin%20%5Cleft(%202%2C%2B%5Cinfty%20%5Cright)%20

因为%5Ccolor%7Bred%7D%7Bx%5E2%2Bx-1%7D%3E5%5Ccolor%7Bred%7D%7B%3E0%7D

所以%5Cfrac%7Bx%5E2%2Bx-1%7D%7B%5Cmathrm%7Be%7D%5Ex%7D%3E0

所以%5Ccolor%7Bred%7D%7Bg%5Cleft(%20x%20%5Cright)%7D%20%3D%5Cfrac%7Bx%5E2%2Bx-1%7D%7B%5Cmathrm%7Be%7D%5Ex%7D%2B%5Cmathrm%7Be%7D%3E%5Cmathrm%7Be%7D%5Ccolor%7Bred%7D%7B%3E0%7D.

综上所述:g%5Cleft(%20x%20%5Cright)%20%5Cgeqslant%200,证毕.


务必注意渐近线(2018课标Ⅲ(文)导数)的评论 (共 条)

分享到微博请遵守国家法律