欢迎光临散文网 会员登陆 & 注册

椭圆中的“圆幂定理”

2022-09-07 13:43 作者:数学老顽童  | 我要投稿


如图:过点P(不在椭圆%5CGamma%20上)的直线ABCD分别与椭圆%5CGamma%20%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D1a%3Eb%3E0)交于ABCD,则:

%5Cbbox%5B%23def%2C5px%2Cborder%3A2px%20solid%20%23FF6A6A%5D%7B%5Cfrac%7B%5Cleft%7C%20PA%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PB%20%5Cright%7C%7D%7Br_%7BAB%7D%5E%7B2%7D%7D%3D%5Cfrac%7B%5Cleft%7C%20PC%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PD%20%5Cright%7C%7D%7Br_%7BCD%7D%5E%7B2%7D%7D%7D

注1:其中r_%7BAB%7Dr_%7BCD%7D分别为直线ABCD方向半径.

注2:直线的方向半径指的是与直线平行共线的半径.

证明:设点P的坐标为%5Cleft(%20x_0%2Cy_0%20%5Cright)%20

直线ABCD的倾斜角分别为%5Calpha%20%5Cbeta%20

直线ABCD的方向半径分别为%5Cleft%7C%20OM%20%5Cright%7C%5Cleft%7C%20ON%20%5Cright%7C,如图:

设直线OM的参数方程为%5Cbegin%7Bcases%7D%09x%3Dt%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y%3Dt%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

t为参数),

与椭圆%5CGamma%20联立解得t_%7BM%7D%5E%7B2%7D%3D%5Cfrac%7B1%7D%7B%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%7D,所以

r_%7BAB%7D%5E%7B2%7D%3D%5Cleft%7C%20OM%20%5Cright%7C%5E2%3Dt_%7BM%7D%5E%7B2%7D%3D%5Cfrac%7B1%7D%7B%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%7D

设直线AB的参数方程为%5Cbegin%7Bcases%7D%09x%3Dx_0%2Bt%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y%3Dy_0%2Bt%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

t为参数),

与椭圆%5CGamma%20联立得

%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%2B%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%3D0

所以

%5Cbegin%7Baligned%7D%0A%09%5Cleft%7C%20PA%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PB%20%5Cright%7C%26%3D%5Cleft%7C%20t_1%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20t_2%20%5Cright%7C%3D%5Cleft%7C%20t_1t_2%20%5Cright%7C%5C%5C%0A%09%26%3D%5Cfrac%7B%5Cleft%7C%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%20%5Cright%7C%7D%7B%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%7D%5C%5C%0A%09%5Cend%7Baligned%7D

所以%5Cfrac%7B%5Cleft%7C%20PA%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PB%20%5Cright%7C%7D%7Br_%7BAB%7D%5E%7B2%7D%7D%3D%5Cleft%7C%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%20%5Cright%7C

同理可得%5Cfrac%7B%5Cleft%7C%20PC%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PD%20%5Cright%7C%7D%7Br_%7BCD%7D%5E%7B2%7D%7D%3D%5Cleft%7C%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%20%5Cright%7C

所以%5Cfrac%7B%5Cleft%7C%20PA%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PB%20%5Cright%7C%7D%7Br_%7BAB%7D%5E%7B2%7D%7D%3D%5Cfrac%7B%5Cleft%7C%20PC%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PD%20%5Cright%7C%7D%7Br_%7BCD%7D%5E%7B2%7D%7D.

证毕.

椭圆中的“圆幂定理”的评论 (共 条)

分享到微博请遵守国家法律