欢迎光临散文网 会员登陆 & 注册

命题的对称化改造(再谈2022全国乙圆锥曲线)

2022-06-29 14:31 作者:数学老顽童  | 我要投稿

(2022全国乙,20)已知椭圆 E的中心为坐标原点,对称轴为x轴、y轴,且过A%5Cleft(%200%2C-2%20%5Cright)%20B%5Cleft(%20%5Cfrac%7B3%7D%7B2%7D%2C-1%20%5Cright)%20两点.

(1)求E的方程;

(2)设过点P%5Cleft(%201%2C-2%20%5Cright)%20的直线交EMN两点,过M且平行于x轴的直线与线段AB交于点T,点H满足%5Coverrightarrow%7BMT%7D%3D%5Coverrightarrow%7BTH%7D.证明:直线HN过定点.

解:(1)设E的方程为mx%5E2%2Bny%5E2%3D1

因为EA%5Cleft(%200%2C-2%20%5Cright)%20B%5Cleft(%20%5Cfrac%7B3%7D%7B2%7D%2C-1%20%5Cright)%20两点

所以%5Cbegin%7Bcases%7D%09m%5Ccdot0%5E2%2B%20n%5Ccdot%5Cleft(-2%5Cright)%5E2%20%3D1%5C%5C%09m%5Ccdot%5Cleft(%5Cfrac%7B3%7D%7B2%7D%5Cright)%5E2%2B%20n%5Ccdot%5Cleft(-1%5Cright)%5E2%20%3D1%5C%5C%5Cend%7Bcases%7D

解得%5Cbegin%7Bcases%7D%09m%3D%5Cfrac%7B1%7D%7B3%7D%2C%5C%5C%09n%3D%5Cfrac%7B1%7D%7B4%7D.%5C%5C%5Cend%7Bcases%7D

所以E的方程为%5Cfrac%7Bx%5E2%7D%7B3%7D%2B%5Cfrac%7By%5E2%7D%7B4%7D%3D1.

(2)先画个图

先猜再证:直线NH过定点A,即NHA三点共线.

M%5Cleft(%20x_1%2Cy_1%20%5Cright)%20N%5Cleft(%20x_2%2Cy_2%20%5Cright)%20

因为MH关于T对称,

所以x_1%2Bx_H%3D2x_T,所以

%5Cbegin%7Baligned%7D%09%5Cfrac%7B1%7D%7Bk_%7BMA%7D%7D%2B%5Cfrac%7B1%7D%7Bk_%7BHA%7D%7D%26%3D%5Cfrac%7Bx_1%7D%7By_1%2B2%7D%2B%5Cfrac%7Bx_H%7D%7By_H%2B2%7D%5C%5C%09%26%3D%5Cfrac%7Bx_1%7D%7By_T%2B2%7D%2B%5Cfrac%7Bx_H%7D%7By_T%2B2%7D%5C%5C%09%26%3D%5Cfrac%7Bx_1%2Bx_H%7D%7By_T%2B2%7D%5C%5C%09%26%3D%5Cfrac%7B2x_T%7D%7By_T%2B2%7D%5C%5C%09%26%3D%5Cfrac%7B2%7D%7Bk_%7BAB%7D%7D%3D3%5C%5C%5Cend%7Baligned%7D

欲证NHA三点共线,

只需证k_%7BNA%7D%3Dk_%7BHA%7D

只需证%5Ccolor%7Bred%7D%7B%5Cfrac%7B1%7D%7Bk_%7BMA%7D%7D%2B%5Cfrac%7B1%7D%7Bk_%7BNA%7D%7D%3D3%7D.

椭圆E的方程可化为

%5Cfrac%7Bx%5E2%7D%7B3%7D%2B%5Cfrac%7B%5Cleft(%20y%2B2%20%5Cright)%20%5E2-4y-4%7D%7B4%7D%3D1

整理得%5Ccolor%7Bred%7D%7B%5Cfrac%7Bx%5E2%7D%7B3%7D%2B%5Cfrac%7B%5Cleft(%20y%2B2%20%5Cright)%20%5E2%7D%7B4%7D-%5Cleft(%20y%2B2%20%5Cright)%20%3D0%7D

设直线MN的方程为

mx%2Bn%5Cleft(%20y%2B2%20%5Cright)%20%3D1

因其过点P

所以m%20%5Ccdot%201%2Bn%5Cleft(%20-2%2B2%20%5Cright)%20%3D1

解得m%3D1

所以直线MN的方程为

%5Ccolor%7Bred%7D%7Bx%2Bn%5Cleft(%20y%2B2%20%5Cright)%20%3D1%7D.

联立椭圆E与直线MN,得

%5Cfrac%7Bx%5E2%7D%7B3%7D%2B%5Cfrac%7B%5Cleft(%20y%2B2%20%5Cright)%20%5E2%7D%7B4%7D-%5Cleft(%20y%2B2%20%5Cright)%20%5Cleft%5B%20x%2Bn%20%5Cleft(%20y%2B2%20%5Cright)%20%5Cright%5D%20%3D0

展开

%5Cfrac%7Bx%5E2%7D%7B3%7D%2B%5Cfrac%7B%5Cleft(%20y%2B2%20%5Cright)%20%5E2%7D%7B4%7D-x%5Cleft(%20y%2B2%20%5Cright)%20-n%5Cleft(%20y%2B2%20%5Cright)%20%5E2%3D0

并项

%5Cfrac%7Bx%5E2%7D%7B3%7D-x%5Cleft(%20y%2B2%20%5Cright)%20%2B%5Cleft(%20%5Cfrac%7B1%7D%7B4%7D-n%20%5Cright)%20%5Cleft(%20y%2B2%20%5Cright)%20%5E2%3D0

各项同除以%5Cleft(%20y%2B2%20%5Cright)%20%5E2,得

%5Cfrac%7B1%7D%7B3%7D%5Cleft(%20%5Cfrac%7Bx%7D%7By%2B2%7D%20%5Cright)%20%5E2-%5Cfrac%7Bx%7D%7By%2B2%7D%2B%5Cfrac%7B1%7D%7B4%7D-n%20%3D0

所以

%5Cfrac%7B1%7D%7Bk_%7BMA%7D%7D%2B%5Cfrac%7B1%7D%7Bk_%7BNA%7D%7D%3D%5Cfrac%7Bx_1%7D%7By_1%2B2%7D%2B%5Cfrac%7Bx_2%7D%7By_2%2B2%7D%3D3

证毕.

命题的对称化改造(再谈2022全国乙圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律