《利用Python进行数据分析·第2版》第14章 数据分析案例

本书正文的最后一章,我们来看一些真实世界的数据集。对于每个数据集,我们会用之前介绍的方法,从原始数据中提取有意义的内容。展示的方法适用于其它数据集,也包括你的。本章包含了一些各种各样的案例数据集,可以用来练习。
案例数据集可以在Github仓库找到,见第一章。
14.1 来自Bitly的USA.gov数据
2011年,URL缩短服务Bitly跟美国政府网站USA.gov合作,提供了一份从生成.gov或.mil短链接的用户那里收集来的匿名数据。在2011年,除实时数据之外,还可以下载文本文件形式的每小时快照。写作此书时(2017年),这项服务已经关闭,但我们保存一份数据用于本书的案例。
以每小时快照为例,文件中各行的格式为JSON(即JavaScript Object Notation,这是一种常用的Web数据格式)。例如,如果我们只读取某个文件中的第一行,那么所看到的结果应该是下面这样:
In [5]: path = 'datasets/bitly_usagov/example.txt'
In [6]: open(path).readline()
Out[6]: '{ "a": "Mozilla\\/5.0 (Windows NT 6.1; WOW64) AppleWebKit\\/535.11
(KHTML, like Gecko) Chrome\\/17.0.963.78 Safari\\/535.11", "c": "US", "nk": 1,
"tz": "America\\/New_York", "gr": "MA", "g": "A6qOVH", "h": "wfLQtf", "l":
"orofrog", "al": "en-US,en;q=0.8", "hh": "1.usa.gov", "r":
"http:\\/\\/www.facebook.com\\/l\\/7AQEFzjSi\\/1.usa.gov\\/wfLQtf", "u":
"http:\\/\\/www.ncbi.nlm.nih.gov\\/pubmed\\/22415991", "t": 1331923247, "hc":
1331822918, "cy": "Danvers", "ll": [ 42.576698, -70.954903 ] }\n'
阅读全文:http://t.cn/Rudc6hq