欢迎光临散文网 会员登陆 & 注册

量子场论(八):量子庞加莱变换的生成元算符

2022-11-25 22:17 作者:我的世界-华汁  | 我要投稿

时空坐标的庞加莱变换(%5CLambda%2Ca)为:

x%5E%7B%5Cprime%5Cmu%7D%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20x%5E%5Cnu%2Ba%5E%5Cmu.%5Ctag%7B8.1%7D

它是洛伦兹变换与时空平移的组合。如果量子系统既有洛伦兹对称性又有时空平移对称性,那么庞加莱变换(%5CLambda%2Ca)(这里的洛伦兹变换是固有保时向的)能诱导出态矢%7C%5CPsi%5Crangle的线性幺正变换:

%7C%5CPsi%5E%5Cprime%5Crangle%3D%5Chat%20U(%5CLambda%2Ca)%7C%5CPsi%5Crangle.%5Ctag%7B8.2%7D

U(%5CLambda%2Ca)是一个线性幺正算符,描述量子庞加莱变换,它满足:

%5Chat%20U%5E%5Cdagger(%5CLambda%2Ca)%5Chat%20U(%5CLambda%2Ca)%3D%5Chat%20U(%5CLambda%2Ca)%5Chat%20U%5E%5Cdagger(%5CLambda%2Ca)%3D1%2C%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%3D%5Chat%20U%5E%5Cdagger(%5CLambda%2Ca).%5Ctag%7B8.3%7D

算符的幺正性保证态矢的内积在量子庞加莱变换下不变:

%5Clangle%5CPsi%5E%5Cprime%7C%5CPsi%5E%5Cprime%5Crangle%3D%5Clangle%5CPsi%7C%5Chat%20U%5E%5Cdagger(%5CLambda%2Ca)%5Chat%20U(%5CLambda%2Ca)%7C%5CPsi%5Crangle%3D%5Clangle%5CPsi%7C%5CPsi%5Crangle.%5Ctag%7B8.4%7D

%5Chat%20U(%5Cmathbf%201%2C0)%3D1是恒等变换算符。a%5E%5Cmu%3D0对应于洛伦兹变换,因此:

%5Chat%20U(%5CLambda)%5Cequiv%5Chat%20U(%5CLambda%2C0).%5Ctag%7B8.5%7D

这是量子洛伦兹变换。%5Chat%20U(%5Cmathbf%201%2Ca)描述量子时空平移变换。

对时空坐标先做庞加莱变换(%5CLambda_1%2Ca_1)%2C再做庞加莱变换(%5CLambda_2%2Ca_2)%2C得到:

x%5E%7B%5Cprime%5Cprime%5Cmu%7D%3D%7B(%5CLambda_2)%5E%5Cmu%7D_%5Cnu%20x%5E%7B%5Cprime%5Cnu%7D%2Ba%5E%5Cmu_2%3D%7B(%5CLambda_2)%5E%5Cmu%7D_%5Cnu%5B%7B(%5CLambda)%5E%5Cnu%7D_%5Crho%20x%5E%7B%5Crho%7D%2Ba%5E%5Cnu_1%5D%2Ba%5E%5Cmu_2%3D%7B(%5CLambda_2%5CLambda_1)%5E%5Cmu%7D_%5Cnu%20x%5E%5Cnu%2B%7B(%5CLambda_2)%5E%5Cmu%7D_%5Cnu%20a%5E%5Cnu_1%2Ba%5E%5Cmu_2.%5Ctag%7B8.6%7D

这相当于做庞加莱变换(%5CLambda_2%5CLambda_1%2C%5CLambda_2a_1%2Ba_2)%2C因而存在同态关系:

%5Chat%20U(%5CLambda_2%2Ca_2)%5Chat%20U(%5CLambda_1%2Ca_1)%3D%5Chat%20U(%5CLambda_2%5CLambda_1%2C%5CLambda_2%20a_2%2Ba_1)%2C%5Chat%20U(%5CLambda_2)%5Chat%20U(%5CLambda_1)%3D%5Chat%20U(%5CLambda_2%5CLambda_1).%5Ctag%7B8.7%7D

因此,集合%5C%7B%5Chat%20U(%5CLambda%2Ca)%5C%7D%5C%7B%5Chat%20U(%5CLambda)%5C%7D分别构成庞加莱群和洛伦兹群的无穷维幺正线性表示。从而,由:

%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%5Chat%20U(%5CLambda%2Ca)%3D1%3D%5Chat%20U(%5Cmathbf%201%2C0)%3D%5Chat%20U(%5CLambda%5E%7B-1%7D%5CLambda%2C%5CLambda%5E%7B-1%7Da-%5CLambda%5E%7B-1%7Da)%3D%5Chat%20U(%5CLambda%5E%7B-1%7D%2C-%5CLambda%5E%7B-1%7Da)%5Chat%20U(%5CLambda%2Ca).%5Ctag%7B8.8%7D

得到逆变换算符:

%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%3D%5Chat%20U(%5CLambda%5E%7B-1%7D%2C-%5CLambda%5E%7B-1%7Da)%2C%5Chat%20U%5E%7B-1%7D(%5CLambda)%3D%5Chat%20U(%5CLambda%5E%7B-1%7D).%5Ctag%7B8.9%7D

无穷小洛伦兹变换的矩阵形式是%5CLambda%3D%5Cmathbf1%2B%5Comega%2C无穷小时空平移变换为a%5E%5Cmu%3D%5Cvarepsilon%5E%5Cmu%2C其中%5Comega%2C%5Cvarepsilon%5E%5Cmu是无穷小量。从而,无穷小庞加莱变换(%5Cmathbf1%2B%5Comega%2C%5Cvarepsilon%20)的无穷小算符为:

%5Chat%20U(%5Cmathbf%201%2B%5Comega%2C%5Cvarepsilon%20)%3D1%2B%5Comega%20_%7B%5Cmu%5Cnu%7D%5Cfrac%7B%5Cpartial%5Chat%20U(%5CLambda%20%2Ca)%7D%7B%5Cpartial%5Comega_%7B%5Cmu%5Cnu%7D%20%7D%5Cbigg%7C_%7B%5Comega_%7B%5Cmu%5Cnu%7D%3D0%2C%5Cvarepsilon_%5Cmu%3D0%20%7D%2B%5Cvarepsilon%20_%5Cmu%5Cfrac%7B%5Cpartial%5Chat%20U(%5CLambda%20%2Ca)%7D%7B%5Cpartial%5Comega_%7B%5Cmu%5Cnu%7D%20%7D%5Cbigg%7C_%7B%5Cvarepsilon%20_%7B%5Cmu%7D%3D0%2C%5Cvarepsilon_%5Cmu%3D0%20%7D%3D1-%5Cfrac%20i2%5Comega%20_%7B%5Cmu%5Cnu%7D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D-i%5Cvarepsilon_%5Cmu%20%5Chat%20P%5E%5Cmu.%5Ctag%7B8.10%7D%20

其中:

%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%3D2i%5Cfrac%7B%5Cpartial%5Chat%20U(%5CLambda%20%2Ca)%7D%7B%5Cpartial%5Comega_%7B%5Cmu%5Cnu%7D%20%7D%5Cbigg%7C_%7B%5Comega_%7B%5Cmu%5Cnu%7D%3D0%2C%5Cvarepsilon_%5Cmu%3D0%20%7D%2C%5Chat%20P%5E%5Cmu%3Di%5Cfrac%7B%5Cpartial%5Chat%20U(%5CLambda%20%2Ca)%7D%7B%5Cpartial%5Comega_%7B%5Cmu%5Cnu%7D%20%7D%5Cbigg%7C_%7B%5Cvarepsilon%20_%7B%5Cmu%7D%3D0%2C%5Cvarepsilon_%5Cmu%3D0%20%7D%20.%5Ctag%7B8.11%7D%20

分别是量子洛伦兹变换和量子时空平移变换的生成元算符。%5Chat%20J%5E%7B%5Cmu%5Cnu%7D是反对称的,即:

%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%3D-%5Chat%20J%5E%7B%5Cnu%5Cmu%7D.%5Ctag%7B8.12%7D

于是%5Chat%20J%5E%7B%5Cmu%5Cnu%7D有6个独立分量,%5Chat%20P%5E%7B%5Cmu%7D有4个独立分量。由%5Chat%20U(%5Cmathbf1%2B%5Comega%2C%5Cvarepsilon%20)的幺正性可知生成元算符也是幺正的:

(%5Chat%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Cdagger%3D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%2C(%5Chat%20P%5E%5Cmu)%5E%5Cdagger%3D%5Chat%20P%5E%7B%5Cmu%7D.%5Ctag%7B8.13%7D

根据逆变换(8.9)和同态关系(8.7),有:

%5Cbegin%7Balign%7D%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%5Chat%20U(%5Cmathbf%201%2B%5Comega%2C%5Cvarepsilon%20)%5Chat%20U(%5CLambda%2Ca)%26%3D%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)(1-%5Cfrac%20i2%5Comega%20_%7B%5Cmu%5Cnu%7D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D-i%5Cvarepsilon_%5Cmu%20%5Chat%20P%5E%5Cmu)%5Chat%20U(%5CLambda%2Ca)%5C%5C%26%3D1-%5Cfrac%20i2%5Comega%20_%7B%5Cmu%5Cnu%7D%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5CLambda%2Ca)-i%5Cvarepsilon%20_%5Cmu%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%5Chat%20P%5E%7B%5Cmu%7D%5Chat%20U(%5CLambda%2Ca).%5Cend%7Balign%7D%5Ctag%7B8.14%7D

%5Chat%20U(%5Cmathbf%201%2B%5CLambda%5E%7B-1%7D%5Comega%5CLambda%2C%5CLambda%5E%7B-1%7D%5Comega%20a%2B%5CLambda%5E%7B-1%7D%5Cvarepsilon)%3D1-%5Cfrac%20i2(%5CLambda%5E%7B-1%7D%5Comega%5CLambda)_%7B%5Cmu%5Cnu%7D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D-i(%5CLambda%5E%7B-1%7D%5Comega%20a%2B%5CLambda%5E%7B-1%7D%5Cvarepsilon)_%5Cmu%5Chat%20P%5E%5Cmu.%5Ctag%7B8.15%7D

利用%7B(%5CLambda%5E%7B-1%7D)%5E%5Calpha%7D_%5Cbeta%3Dg%5E%7B%5Calpha%20%5Csigma%20%7Dg_%7B%5Cbeta%20%5Crho%20%7D%7B%5CLambda%5E%5Crho%7D_%5Csigma%2C有:

%5Cbegin%7Balign%7D(%5CLambda%5E%7B-1%7D%5Comega%5CLambda)_%7B%5Cmu%5Cnu%7D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%26%3Dg_%7B%5Cmu%5Calpha%7D%7B(%5CLambda%5E%7B-1%7D%5Comega%20%5CLambda%20)%5E%5Calpha%20%7D_%5Cnu%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%3Dg_%7B%5Cmu%5Calpha%7D%7B(%5CLambda%5E%7B-1%7D)%5E%5Calpha%7D_%5Cbeta%7B%5Comega%5E%5Cbeta%7D_%5Cgamma%7B%5CLambda%5E%5Cgamma%7D_%5Cnu%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5C%5C%26%3Dg_%7B%5Cmu%5Calpha%7Dg%5E%7B%5Calpha%20%5Csigma%20%7Dg_%7B%5Cbeta%20%5Crho%20%7D%7B%5CLambda%5E%5Crho%20%7D_%5Csigma%20%7B%5Comega%5E%5Cbeta%7D_%5Cgamma%7B%5CLambda%5E%5Cgamma%7D_%5Cnu%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%3D%7B%5CLambda%5E%5Crho%7D_%5Cmu%5Comega_%7B%5Crho%5Cgamma%7D%7B%5CLambda%5E%5Cgamma%7D_%5Cnu%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%3D%5Comega_%7B%5Cmu%5Cnu%7D%7B%5CLambda%5E%5Cmu%7D_%5Crho%7B%5CLambda%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Cmu%5Crho%7D.%5Ctag%7B8.16%7D%5Cend%7Balign%7D

%5Cbegin%7Balign%7D(%5CLambda%5E%7B-1%7D%5Comega%20a%2B%5CLambda%5E%7B-1%7D%5Cvarepsilon)_%5Cmu%5Chat%20P%5E%5Cmu%26%3Dg_%7B%5Cmu%5Cnu%7D%7B(%5CLambda%5E%7B-1%7D)%5E%5Cnu%7D_%5Crho(%7B%5Comega%5E%5Crho%7D_%5Csigma%20a%5E%5Csigma%5Chat%20P%5E%5Cmu%2B%5Cvarepsilon%5E%5Crho%5Chat%20P%5E%5Cmu)%3Dg_%7B%5Cmu%5Cnu%7Dg%5E%7B%5Cnu%5Cbeta%7Dg_%7B%5Crho%5Calpha%7D%7B%5CLambda%5E%5Calpha%7D_%5Cbeta(%7B%5Comega%5E%5Crho%7D_%5Csigma%20a%5E%5Csigma%5Chat%20P%5E%5Cmu%2B%5Cvarepsilon%5E%5Crho%5Chat%20P%5E%5Cmu)%5C%5C%26%3D%7B%5Cdelta%5E%5Cbeta%7D_%5Cmu%7B%5CLambda%5E%5Calpha%7D_%5Cbeta(%7B%5Comega%7D_%7B%5Calpha%5Csigma%7D%20a%5E%5Csigma%5Chat%20P%5E%5Cmu%2B%5Cvarepsilon_%5Calpha%5Chat%20P%5E%5Cmu)%3D%7B%5Comega%7D_%7B%5Calpha%5Csigma%7D%7B%5CLambda%5E%5Calpha%7D_%5Cmu%20a%5E%5Csigma%5Chat%20P%5E%5Cmu%2B%5Cvarepsilon_%5Calpha%7B%5CLambda%5E%5Calpha%7D_%5Cmu%5Chat%20P%5E%5Cmu%5C%5C%26%3D%5Cfrac12%5Comega_%7B%5Cmu%5Cnu%7D(%7B%5CLambda%5E%5Cmu%7D_%5Crho%20a%5E%5Cnu%5Chat%20P%5E%5Crho-%7B%5CLambda%5E%5Cnu%7D_%5Crho%20a%5E%5Cmu%5Chat%20P%5E%5Crho)%2B%5Cvarepsilon%20_%5Cmu%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Chat%20P%5E%5Cnu.%5Cend%7Balign%7D%5Ctag%7B8.17%7D

代入(8.15)式,得到:

%5Chat%20U(%5Cmathbf%201%2B%5CLambda%5E%7B-1%7D%5Comega%5CLambda%2C%5CLambda%5E%7B-1%7D%5Comega%20a%2B%5CLambda%5E%7B-1%7D%5Cvarepsilon)%3D1-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D(%7B%5CLambda%5E%5Cmu%7D_%5Crho%7B%5CLambda%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Crho%5Csigma%7D%2B%7B%5CLambda%5E%5Cmu%7D_%5Crho%20a%5E%5Cnu%5Chat%20P%5E%5Crho-%7B%5CLambda%5E%5Cnu%7D_%5Crho%20a%5E%5Cmu%5Chat%20P%5E%5Crho)-i%5Cvarepsilon_%5Cmu%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Chat%20P%5E%5Cnu.%5Ctag%7B8.18%7D

与(8.14)式比较,得到:

%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5CLambda%2Ca)%3D%7B%5CLambda%5E%5Cmu%7D_%5Crho%7B%5CLambda%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Crho%5Csigma%7D%2B%7B%5CLambda%5E%5Cmu%7D_%5Crho%20a%5E%5Cnu%5Chat%20P%5E%5Crho-%7B%5CLambda%5E%5Cnu%7D_%5Crho%20a%5E%5Cmu%5Chat%20P%5E%5Crho.%5Ctag%7B8.19%7D

%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%5Chat%20P%5E%7B%5Cmu%7D%5Chat%20U(%5CLambda%2Ca)%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Chat%20P%5E%5Cnu.%5Ctag%7B8.20%7D

a%5E%5Cmu%3D0%2C庞加莱变换变为洛伦兹变换:

%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5CLambda)%3D%7B%5CLambda%5E%5Cmu%7D_%5Crho%7B%5CLambda%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Crho%5Csigma%7D.%5Ctag%7B8.21%7D

%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20P%5E%7B%5Cmu%7D%5Chat%20U(%5CLambda)%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Chat%20P%5E%5Cnu.%5Ctag%7B8.22%7D

可以得到生成元在态矢%7C%5CPsi%5E%5Cprime%5Crangle%3D%5Chat%20U(%5CLambda)%7C%5CPsi%5Crangle中的期待值:

%5Clangle%5CPsi%5E%5Cprime%7C%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%7C%5CPsi%5E%5Cprime%5Crangle%3D%5Clangle%5CPsi%7C%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5CLambda)%7C%5CPsi%5Crangle%3D%7B%5CLambda%5E%5Cmu%7D_%5Crho%7B%5CLambda%5E%5Cnu%7D_%5Csigma%5Clangle%5CPsi%7C%5Chat%20J%5E%7B%5Crho%5Csigma%7D%7C%5CPsi%5Crangle.%5Ctag%7B8.23%7D

%5Clangle%5CPsi%5E%5Cprime%7C%5Chat%20P%5E%5Cmu%7C%5CPsi%5E%5Cprime%5Crangle%3D%5Clangle%5CPsi%7C%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20P%5E%7B%5Cmu%7D%5Chat%20U(%5CLambda)%7C%5CPsi%5Crangle%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Clangle%5CPsi%7C%5Chat%20P%5E%5Cnu%7C%5CPsi%5Crangle.%5Ctag%7B8.24%7D

可将%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5CLambda)%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20P%5E%5Cmu%5Chat%20U(%5CLambda)看做由洛伦兹变换%5CLambda诱导的%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20P%5E%5Cmu的洛伦兹变换:

%5Chat%20J%5E%7B%5Cprime%5Cmu%5Cnu%7D%3D%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5CLambda)%3D%7B%5CLambda%5E%5Cmu%7D_%5Crho%7B%5CLambda%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Crho%5Csigma%7D.%5Ctag%7B8.25%7D

%5Chat%20P%5E%7B%5Cprime%5Cmu%7D%3D%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20P%5E%7B%5Cmu%7D%5Chat%20U(%5CLambda)%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Chat%20P%5E%5Cnu.%5Ctag%7B8.26%7D

这说明%5Chat%20J%5E%7B%5Cmu%5Cnu%7D是个二阶张量算符,%5Chat%20P%5E%5Cmu是个四维矢量算符。

量子场论(八):量子庞加莱变换的生成元算符的评论 (共 条)

分享到微博请遵守国家法律