欢迎光临散文网 会员登陆 & 注册

【趣味数学题】约翰·伯努利的积分趣题

2022-06-10 07:57 作者:AoiSTZ23  | 我要投稿

郑涛(Tao Steven Zheng)著


【问题】 

1697 年,瑞士数学家约翰·伯努利(Johann Bernoulli,1667 – 1748)发现了一个非常有趣的微积分结果:

%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B1%7D%7Bx%5Ex%7D%20dx%20%3D%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bn%5En%7D.%20

证明这个有趣的结果!

提示

(1) 最初使用此变换: %20%5Cfrac%7B1%7D%7Bx%5Ex%7D%20%3D%20%7Be%7D%5E%7B-x%20%5Cln%20x%7D 。

(2)  使用此泰勒级数:e%5Ex%20%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7Bx%5En%7D%7Bn!%7D

【题解】 

该积分问题是一个含有不定式(indeterminate form) 0%5E0 异常积分(improper integral)。 知到 %5Clim_%7Bx%20%5Crightarrow%200%7D%20x%5Ex%20%3D%201 就能得到

%20%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B1%7D%7Bx%5Ex%7D%20dx%20%3D%20%5Cint_%7B0%7D%5E%7B1%7D%20%7Be%7D%5E%7B-x%20%5Cln%20x%7D%20dx%E3%80%82


使用泰勒级数 e%5Ex%20%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7Bx%5En%7D%7Bn!%7D 得


%5Cbegin%7Balign%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B1%7D%7Bx%5Ex%7D%20dx%20%26%3D%20%5Cint_%7B0%7D%5E%7B1%7D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B%7B(-x%20%5Cln%20x)%7D%5E%7Bn%7D%7D%7Bn!%7D%20dx%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bn!%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20%7B(-x%20%5Cln%20x)%7D%5E%7Bn%7D%20dx%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B%7B(-1)%7D%5E%7Bn%7D%7D%7Bn!%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20x%5En%20%7B%5Cln%7D%5E%7Bn%7D%20x%20%5C%3Bdx%20%5C%5C%0A%0A%5Cend%7Balign%7D%20


使用分部积分法来推算:%5Cint_%7B0%7D%5E%7B1%7D%20x%5En%20%7B%5Cln%7D%5E%7Bn%7D%20x%20%5C%3Bdx

设 u%20%3D%20%7B%5Cln%7D%5E%7Bn%7D%20xdu%20%3D%20%5Cfrac%7Bn%7D%7Bx%7D%20%7B%5Cln%7D%5E%7Bn-1%7D%20x%20%5C%3Bdxdv%20%3D%20x%5En%20dx%20, 和 v%20%3D%20%5Cfrac%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D


因此,

%20%5Cbegin%7Balign%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20x%5En%20%7B%5Cln%7D%5E%7Bn%7D%20x%20%5C%3Bdx%20%26%3D%20%5Cleft(%5Cfrac%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D%7B%5Cln%7D%5E%7Bn%7D%20x%20%5Cright)_%7B0%7D%5E%7B1%7D%20-%20%5Cfrac%7Br%7D%7Br%2B1%7D%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7Bx%7D%20%7B%5Cln%7D%5E%7Bn-1%7D%20x%20%5C%3Bdx%20%5C%5C%0A%0A%26%3D%20-%5Cfrac%7Bn%7D%7Bn%2B1%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-1%7D%20x%20%5C%3Bdx%20%5C%5C%0A%0A%5Cend%7Balign%7D%20


继续部分积分法来推算%20%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-1%7D%20x%20%5C%3Bdx :

%5Cbegin%7Balign%7D%20%0A%0A%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-1%7D%20x%20%5C%3Bdx%20%26%3D%20-%5Cfrac%7Bn-1%7D%7Bn%2B1%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-2%7D%20x%20%5C%3Bdx%20%5C%5C%0A%0A%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-2%7D%20x%20%5C%3Bdx%20%26%3D%20-%5Cfrac%7Bn-2%7D%7Bn%2B1%7D%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-3%7D%20x%20%5C%3Bdx%2C%20%5C%3B%E7%AD%89%E7%AD%89%E3%80%82%5C%5C%0A%0A%5Cend%7Balign%7D



所以,

%5Cbegin%7Balign%7D%20%0A%0A%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-1%7D%20x%20%5C%3Bdx%20%26%3D%20-%5Cfrac%7Bn-1%7D%7Bn%2B1%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-2%7D%20x%20%5C%3Bdx%20%5C%5C%0A%0A%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-2%7D%20x%20%5C%3Bdx%20%26%3D%20-%5Cfrac%7Bn-2%7D%7Bn%2B1%7D%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-3%7D%20x%20%5C%3Bdx%2C%20%5C%3B%E7%AD%89%E7%AD%89%E3%80%82%5C%5C%0A%0A%5Cend%7Balign%7D


所以,

%5Cbegin%7Balign%7D%0A%0A%5Cint_%7B0%7D%5E%7B1%7D%20x%5En%20%7B%5Cln%7D%5E%7Bn%7D%20x%20%5C%3Bdx%20%26%3D%20%5Cfrac%7B%7B(-1)%7D%5E%7Bn%7Dn!%7D%7B%7B(n%2B1)%7D%5E%7Bn%7D%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20dx%20%5C%5C%0A%0A%26%3D%20%5Cfrac%7B%7B(-1)%7D%5E%7Bn%7Dn!%7D%7B%7B(n%2B1)%7D%5E%7Bn%2B1%7D%7D%20%0A%0A%5Cend%7Balign%7D


因此,

%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B1%7D%7Bx%5Ex%7D%20dx%20%3D%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bn%5En%7D.%20




【趣味数学题】约翰·伯努利的积分趣题的评论 (共 条)

分享到微博请遵守国家法律