Plant 3D里翻到Python相关的东西,记录一下
NAME
varmain
PACKAGE CONTENTS
arc
arcsub (package)
blind
blindsub (package)
cap
capsub (package)
coupling
couplingsub (package)
cross
crossover
crossoversub (package)
crosssub (package)
custom
cylinderstack
cylinderstacksub (package)
div
divsub (package)
dummy_var
eqfactory
filter
filtersub (package)
flange
flangesub (package)
gasket
gasketsub (package)
instrsub (package)
instruments
miscellaneous
miscellaneoussub (package)
multiport
multisub (package)
offset
offsetsub (package)
pipe
pipesub (package)
primitiv
pump
pumpsub (package)
reducer
reducersub (package)
squareconduits
squareconduitssub (package)
supports
supportssub (package)
tee
teesub (package)
valve
valvsub (package)
var_basic
var_util
weld_ent
weldentsub (package)
FUNCTIONS
CurrentSpace(...)
LOFT(...)
acos(x, /)
Return the arc cosine (measured in radians) of x.
acosh(x, /)
Return the inverse hyperbolic cosine of x.
activate(...)
asin(x, /)
Return the arc sine (measured in radians) of x.
asinh(x, /)
Return the inverse hyperbolic sine of x.
atan(x, /)
Return the arc tangent (measured in radians) of x.
atan2(y, x, /)
Return the arc tangent (measured in radians) of y/x.
Unlike atan(y/x), the signs of both x and y are considered.
atanh(x, /)
Return the inverse hyperbolic tangent of x.
ceil(x, /)
Return the ceiling of x as an Integral.
This is the smallest integer >= x.
copysign(x, y, /)
Return a float with the magnitude (absolute value) of x but the sign of y.
On platforms that support signed zeros, copysign(1.0, -0.0)
returns -1.0.
cos(x, /)
Return the cosine of x (measured in radians).
cosh(x, /)
Return the hyperbolic cosine of x.
degrees(x, /)
Convert angle x from radians to degrees.
dynloadVariant(name)
erf(x, /)
Error function at x.
erfc(x, /)
Complementary error function at x.
exp(x, /)
Return e raised to the power of x.
expm1(x, /)
Return exp(x)-1.
This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.
fabs(x, /)
Return the absolute value of the float x.
factorial(x, /)
Find x!.
Raise a ValueError if x is negative or non-integral.
floor(x, /)
Return the floor of x as an Integral.
This is the largest integer <= x.
fmod(x, y, /)
Return fmod(x, y), according to platform C.
x % y may differ.
frexp(x, /)
Return the mantissa and exponent of x, as pair (m, e).
m is a float and e is an int, such that x = m * 2.**e.
If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.
fsum(seq, /)
Return an accurate floating point sum of values in the iterable seq.
Assumes IEEE-754 floating point arithmetic.
gamma(x, /)
Gamma function at x.
gcd(x, y, /)
greatest common divisor of x and y
hypot(x, y, /)
Return the Euclidean distance, sqrt(x*x + y*y).
isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Determine whether two floating point numbers are close in value.
rel_tol
maximum difference for being considered "close", relative to the
magnitude of the input values
abs_tol
maximum difference for being considered "close", regardless of the
magnitude of the input values
Return True if a is close in value to b, and False otherwise.
For the values to be considered close, the difference between them
must be smaller than at least one of the tolerances.
-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
is, NaN is not close to anything, even itself. inf and -inf are
only close to themselves.
isfinite(x, /)
Return True if x is neither an infinity nor a NaN, and False otherwise.
isinf(x, /)
Return True if x is a positive or negative infinity, and False otherwise.
isnan(x, /)
Return True if x is a NaN (not a number), and False otherwise.
ldexp(x, i, /)
Return x * (2**i).
This is essentially the inverse of frexp().
lgamma(x, /)
Natural logarithm of absolute value of Gamma function at x.
log(...)
log(x, [base=math.e])
Return the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.
log10(x, /)
Return the base 10 logarithm of x.
log1p(x, /)
Return the natural logarithm of 1+x (base e).
The result is computed in a way which is accurate for x near zero.
log2(x, /)
Return the base 2 logarithm of x.
mLine(...)
mPoint(...)
mSphere(...)
mTransform(...)
mVector(...)
modf(x, /)
Return the fractional and integer parts of x.
Both results carry the sign of x and are floats.
pow(x, y, /)
Return x**y (x to the power of y).
radians(x, /)
Convert angle x from degrees to radians.
remainder(x, y, /)
Difference between x and the closest integer multiple of y.
Return x - n*y where n*y is the closest integer multiple of y.
In the case where x is exactly halfway between two multiples of
y, the nearest even value of n is used. The result is always exact.
sin(x, /)
Return the sine of x (measured in radians).
sinh(x, /)
Return the hyperbolic sine of x.
sqrt(x, /)
Return the square root of x.
tan(x, /)
Return the tangent of x (measured in radians).
tanh(x, /)
Return the hyperbolic tangent of x.
test()
trunc(x, /)
Truncates the Real x to the nearest Integral toward 0.
Uses the __trunc__ magic method.
DATA
ARC3D = pyvariant.p3dprimitive object at 0x000002A02CF81EB0
ARC3D2 = pyvariant.p3dprimitive object at 0x000002A02CF81ED0
ARC3D2_ = pyvariant.p3dprimitive object at 0x000002A02CF90C90
ARC3DS = pyvariant.p3dprimitive object at 0x000002A02CF81EF0
ARC3DS2 = pyvariant.p3dprimitive object at 0x000002A02CF90D10
BOX = pyvariant.p3dprimitive object at 0x000002A02CF81F10
CONE = pyvariant.p3dprimitive object at 0x000002A02CF81E90
CON_HM = pyvariant.p3dprimitive object at 0x000002A02CF90CF0
CON_MJ = pyvariant.p3dprimitive object at 0x000002A02CF90C50
CON_OF = pyvariant.p3dprimitive object at 0x000002A02CF90C30
CON_OM = pyvariant.p3dprimitive object at 0x000002A02CF90B90
CON_PL = pyvariant.p3dprimitive object at 0x000002A02CF90C70
CON_Q_ = pyvariant.p3dprimitive object at 0x000002A02CF90CB0
CON_Q__Sub = pyvariant.p3dprimitive object at 0x000002A02CF90CD0
CORNERBOX = pyvariant.p3dprimitive object at 0x000002A02CF90A90
CPVX178 = pyvariant.p3dprimitive object at 0x000002A02D050510
CUBE = pyvariant.p3dprimitive object at 0x000002A02CF81F30
CYLINDER = pyvariant.p3dprimitive object at 0x000002A02CF81E70
ELLIPSE = pyvariant.p3dprimitive object at 0x000002A02CF81E50
ELLIPSOIDHEAD = pyvariant.p3dprimitive object at 0x000002A02CF900B0
ELLIPSOIDHEAD2 = pyvariant.p3dprimitive object at 0x000002A02CF900D0
ELLIPSOIDHEAD2TO1 = pyvariant.p3dprimitive object at 0x000002A02CF9017...
ELLIPSOIDSEGMENT = pyvariant.p3dprimitive object at 0x000002A02CF90030
FLATHEAD = pyvariant.p3dprimitive object at 0x000002A02CF90110
HALFSPHERE = pyvariant.p3dprimitive object at 0x000002A02CF90050
LINE = pyvariant.p3dprimitive object at 0x000002A02CF81E30
PIPE = pyvariant.p3dprimitive object at 0x000002A02CF81DD0
POINT = pyvariant.p3dprimitive object at 0x000002A02CF81E10
PYRAMID = pyvariant.p3dprimitive object at 0x000002A02CF81F50
PnP3dACPAdapterIgnoreWallThickness = True
ROUNDRECT = pyvariant.p3dprimitive object at 0x000002A02CF81F70
ROUNDRECTA = pyvariant.p3dprimitive object at 0x000002A02CF81F90
SEMIELLIPSOIDHEAD = pyvariant.p3dprimitive object at 0x000002A02CF9019...
SPHERE = pyvariant.p3dprimitive object at 0x000002A02CF90A10
SPHERESEGMENT = pyvariant.p3dprimitive object at 0x000002A02CF81FD0
STIFFENINGRING = pyvariant.p3dprimitive object at 0x000002A02CF90130
TORISPHERICHEAD = pyvariant.p3dprimitive object at 0x000002A02CF90090
TORISPHERICHEAD2 = pyvariant.p3dprimitive object at 0x000002A02CF90070
TORISPHERICHEAD2TO1 = pyvariant.p3dprimitive object at 0x000002A02CF90...
TORISPHERICHEADH = pyvariant.p3dprimitive object at 0x000002A02CF900F0
TORUS = pyvariant.p3dprimitive object at 0x000002A02CF81FB0
VARINDEX_ = <aqa.varmap.varindex.VarIndex object>
defaultNozzleLength = 100.0
defaultPipeLength = 100.0
defaultTolerance = 0.001
e = 2.718281828459045
inf = inf
mcE = 2.718281828459045
mcPi = 3.141592653589793
mcSqrt2 = 1.4142135623730956
mcSqrt3 = 1.7320508075688772
mcTome = 1.618033988749895
nan = nan
pi = 3.141592653589793
tau = 6.283185307179586
FILE
c:\program files\autodesk\autocad 2024\plnt3d\contentscripts\variants.zip\varmain\__init__.py
Help on p3dprimitive in varmain object:
varmain.BOX = class p3dprimitive(builtins.object)
| p3dprimitive() -> p3dprimitive object
|
| Methods defined here:
|
| __call__(self, /, *args, **kwargs)
| Call self as a function.
|
| __getattribute__(self, name, /)
| Return getattr(self, name).
|
| __init__(self, /, *args, **kwargs)
| Initialize self. See help(type(self)) for accurate signature.
|
| __repr__(self, /)
| Return repr(self).
|
| directionAt(...)
| directionAt(n,inECS=0) ->mVector
|
| return the direction of the nth connection point
| if inECS==1, return the direction in ECS coords
|
| erase(...)
| erase body
|
| extents(...)
| self -> (minPt, maxpt)
|
| retrieve the body's extents
|
| intersectWith(...)
| self,other
| intersect body self with other
|
| numberOfPoints(...)
| numberOfPoints() -> int
|
| return number of (connection) points
|
| parameters(...)
| parameters() -> ParamValue
|
| return the element's construction parameters
|
| pointAt(...)
| pointAt(n,inECS=0) -> mPoint
|
| return the position of the nth connection point
| if inECS==1, return the point in ECS coords
|
| rotateX(...)
| rotateX(a) -> self
|
| rotate the element round the X-axis by a degrees
|
| rotateY(...)
| rotateY(a) -> self
|
| rotate the element round the Y-axis by a degrees
|
| rotateZ(...)
| rotateZ(a) -> self
|
| rotate the element round the Z-axis by a degrees
|
| saveMeshAs(...)
| self,name -> retrieve the body's mesh and save it as *.obj
|
| setBlockName(...)
| self,name -> change the block name to 'name'
|
| setBlockProperties(...)
| self,units,comment -> change the block properties
|
| setColor(...)
| self,c -> Set Color c
|
| setEndpoints(...)
| setEndPoints(p0,p1) -> set Endpoints of Line
|
| setLinearDimension(...)
| self,name,p0,p1 -> Set Dimension named name to go from p1 to p1
|
| setPoint(...)
| setPoint(p, v) -> self
|
| append point at position p, direction v; p,v may be mPoint, mVector or 3-Tupel (x,y,z)
|
| setTransformationMatrix(...)
| setTransformationMatrix(t)
|
| set the elements transformation matrix.
|
| subtractFrom(...)
| self,other
| subtract other from body self
|
| transformationMatrix(...)
| transformationMatrix() -> mTransform
|
| return the element's current transformation matrix
|
| translate(...)
| translate(p) -> self
|
| translate the element by v; v may be mPoint, mVector or 3-Tupel (x,y,z)
|
| uniteWith(...)
| self,other