欢迎光临散文网 会员登陆 & 注册

很水的数学分析108:一般的度量空间

2022-11-12 23:50 作者:乐锄1043  | 我要投稿

收敛性的灵魂的度量。

1.公理化的含义和通常路径。特例→抽象性质→公理化

2.度量定义

①先看主语,主语之一是映射,主语之二是一般的非空集合。

②注意非负性中等号是否能取到。

③同一个集合X上可以定义不止一个度量。

④∅≠Y⊆X,则把d限制在Y×Y上以后是Y上的一个度量。

⑤泛函的概念。

3.抽象度量空间的例子:

离散度量,(R⁺,d)(其中d=|lny/x|)

4.两个重要度量:

C[0,1]中,d₁(f,g)=max|f(x)-g(x)|

d₂(f,g)=∫₀¹|f(x)-g(x)|dx

d₁对应一致收敛

(这一条和111节相对应)

5.有界集定义及削弱版定义

6.集合的直径

7.结合5,6推知命题2.15:在度量空间中,集合E有界当且仅当diamE∈IR

8.一般的度量空间没有线性、乘法、序关系


很水的数学分析108:一般的度量空间的评论 (共 条)

分享到微博请遵守国家法律