欢迎光临散文网 会员登陆 & 注册

A-0-2导数与应用(1/2)

2023-08-26 18:41 作者:夏莉家的鲁鲁  | 我要投稿

0.2.1 导数的定义与表示

物理学中,我们经常需要求一些物理量的变化率,而数学中的导函数是专门研究变化率的工具。

y%3Df(x)是关于x的函数,则在任一点,f(x)关于x的导函数的定义如下:

%5Clim_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B%5CDelta%20y%7D%7B%5CDelta%20x%7D%5Cquad%20or%5Cquad%20%5Clim_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7Bf(x%2B%5CDelta%20x)-f(x)%7D%7B%5CDelta%20x%7D

求导函数的过程简称求导,而f(x)称为导函数对应的原函数.

导函数的表示符号有很多,物理中常用的有2种:

%5Cdfrac%7Bdf%7D%7Bdx%7D%2Cf'(x)

由此我们可以得到

v%3D%5Cdfrac%7Bdx%7D%7Bdt%7D%3Dx'(t)%2Ca%3D%5Cdfrac%7Bdv%7D%7Bdt%7D%3Dv'(t)

特别地,在物理中,如果是对时间求导,我们可以在物理量上加一点表示:

%5Cdot%20x%5Cequiv%20x'(t)%2C%5Cdot%20v%5Cequiv%20v'(t)

不难看出,函数的导函数也可以有自己的导函数,我们可以把求导函数的次数叫做阶,如果对x求2次导数,就叫做求x的二阶导数。对应的符号分别表示为:

%5Cdfrac%7Bd%5E2f%7D%7Bdx%5E2%7D%3D%20f''(x)

如果是对时间求2次导数,可以在物理量上方加2个点:%5Cddot%20x

由基本定义以及极限的运算,我们可以求得一些基本初等函数的导数:

(x%5Ea)'%3Dax%5E%7Ba-1%7D

x%5Cne%200时,

(x%5Ea)'%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B(x%2B%5CDelta%20x)%5Ea-x%5Ea%7D%7B%5CDelta%20x%7D%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7Dx%5Ea%5Cdfrac%7B(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D)%5Ea-1%7D%7B%5CDelta%20x%7D

%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7Bx%5Eaa%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%7D%7B%5CDelta%20x%7D%3Dax%5E%7Ba-1%7D

x%3D0时,结果符合上式.

(a%5Ex)'%3Da%5Ex%5Cln%20a

(a%5Ex)'%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7Ba%5E%7Bx%2B%5CDelta%20x%7D-a%5Ex%7D%7B%5CDelta%20x%7D%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7Da%5Ex%5Cdfrac%7Ba%5E%7B%5CDelta%20x%7D-1%7D%7B%5CDelta%20x%7D

%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7Da%5Ex%5Cdfrac%7Be%5E%7B(%5Cln%20a)%5E%7B%5CDelta%20x%7D%7D-1%7D%7B%5CDelta%20x%7D%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7Da%5Ex%5Cdfrac%7B%5Cln%20a%5CDelta%20x%7D%7B%5CDelta%20x%7D%3Da%5Ex%5Cln%20a

特殊地,当a=e时,(e^x)'=e^x.

(log_ax)'%3D%5Cdfrac%7B1%7D%7Bx%5Cln%20a%7D

(%5Clog_ax)'%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B%5Clog_a(x%2B%5CDelta%20x)-%5Clog_ax%7D%7B%5CDelta%20x%7D%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B1%7D%7B%5CDelta%20x%7D%7B%5Clog_a(%5Cdfrac%7Bx%2B%5CDelta%20x%7D%7Bx%7D)%7D

%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B1%7D%7B%5CDelta%20x%7D%7B%5Clog_a(1%2B%5Cdfrac%7B%5CDelta%20x%7D%7Bx%7D)%7D%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B1%7D%7Bx%7D%5Cdfrac%7Bx%7D%7B%5CDelta%20x%7D%5Clog_a(1%2B%5Cdfrac%7B%5CDelta%20x%7D%7Bx%7D)

%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B1%7D%7Bx%7D%5Clog_a(%5Cdfrac%7Bx%2B%5CDelta%20x%7D%7Bx%7D)%5E%5Cfrac%7B1%7D%7B%5CDelta%20x%7D%3D%5Cdfrac%7B1%7D%7Bx%7D%5Clog_ae%3D%5Cdfrac%7B1%7D%7Bx%5Cln%20a%7D

特殊地,当a%3De时,

(%5Cln%20x)'%3D%5Cdfrac%7B1%7D%7Bx%7D

(%5Csin%20x)'%3D%5Ccos%20x

(%5Csin%20x)'%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B%5Csin(x%2B%5CDelta%20x)-%5Csin%20x%7D%7B%5CDelta%20x%7D

%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B%5Csin%20x%5Ccos(%5CDelta%20x)%2B%5Ccos%20x%5Csin(%5CDelta%20x)-%5Csin%20x%7D%7B%5CDelta%20x%7D

%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B%5Ccos%20x%5Csin(%5CDelta%20x)%7D%7B%5CDelta%20x%7D%3D%5Ccos%20x

0.2.2 导数运算法则

利用导函数的定义,我们容易得到以下运算法则:

四则运算

1.加减

%5Bf(x)%5Cpm%20g(x)%5D'%3Df'(x)%5Cpm%20g'(x)

2.数乘

%5B%5Calpha%20f(x)%5D'%3D%5Calpha%20f'(x)

3.乘法

%5Bf(x)%5Ccdot%20g(x)%5D'%3Df'(x)g(x)%2Bf(x)g'(x)

4.除法

%5B%5Cdfrac%7Bf(x)%7D%7Bg(x)%7D%5D'%3D%5Cdfrac%7Bf'(x)g(x)-f(x)g'(x)%7D%7Bg%5E2(x)%7D

复合函数

%5C%7Bf%5Bg(x)%5D%5C%7D'%3Df'(g)%5Ccdot%20g'(x)

复合函数求导一直是难点中的难点,比如求y%3Dsin%5E2x的导函数,需要注意y是正弦函数和幂函数的复合函数,令u%3D%5Csin%20x,则y%3Du%5E2

y'%5Bu(x)%5D%3Dy'(u)%5Ccdot%20u'(x)%3D2u%5Ccdot%5Ccos%20x%3D2%5Csin%20x%5Ccos%20x

隐函数

形如y%3Df(x)的函数,我们称为显函数,相应的,有些函数并没有表示成y%3Df(x)的形式,比如xy%2Bx%2B1%3D0.我们称之隐函数。

在对隐函数求导时,我们依然可以采用上述求导法则,比如上式,

(xy%2Bx%2B1)'%3D0'

(y%2Bxy'%2B1%2B0)%3D0

y'%3D-%5Cdfrac%7By%2B1%7D%7Bx%7D

代入y%3D-%5Cdfrac%7Bx%2B1%7D%7Bx%7D

y'%3D%5Cdfrac%7B1%7D%7Bx%5E2%7D

反函数

用因变量来表示自变量的函数,我们称为对应函数的反函数。y%3Df(x)的反函数,可以表示为x%3Df%5E%7B-1%7D(y)%0A%0A反函数导数等于原函数导数的倒数

%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Cdfrac%7Bdx%7D%7Bdy%7D%7D%5Cquad%20or%5Cquad%20f'(x)%3D%5Cdfrac%7B1%7D%7B%5Bf%5E%7B-1%7D(y)%5D'%7D

比如对数函数的导数

(%5Clog_ax)'%3D%5Cdfrac%7B1%7D%7B(a%5Ey)'%7D%3D%5Cdfrac%7B1%7D%7B(a%5Ey%5Cln%20a)%7D%3D%5Cdfrac%7B1%7D%7B(x%5Cln%20a%20)%7D


A-0-2导数与应用(1/2)的评论 (共 条)

分享到微博请遵守国家法律