欢迎光临散文网 会员登陆 & 注册

多元函数微分学笔记(2)

2023-06-01 01:09 作者:~Sakuno酱  | 我要投稿

https://www.bilibili.com/read/cv24053526

在这一篇文章我们证明了对于 f%3A%20%5Cmathrm%7BR%7D%5En%20%5Crightarrow%20%5Cmathrm%7BR%7D 若偏导数%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x_j%7D(%5Cmathrm%7Bx%7D)%20 在 %5Cmathrm%7Bx_0%7D 连续,那么 f 在 %5Cmathrm%7Bx_0%7D 处可微

并且提出了一个线性算子 %5B%5Cmathrm%7Bx%7D%5D_i 以及它的一些性质

现在我们考虑 f%3A%20%5Cmathrm%7BR%7D%5En%20%5Crightarrow%20%5Cmathrm%7BR%7D%5Em 的情况

首先我们可以证明 f_i(%5Cmathrm%7Bx%7D)%20%3D%20%5Bf(%5Cmathrm%7Bx%7D)%5D_i%20 是可微的

不失一般性 令 i%3D1


引理1 

 f_1(%5Cmathrm%7Bx%7D) 在 %5Cmathrm%7Bx_0%7D 处可偏导 且 %5Cfrac%7B%20%5Cpartial%20f_1%7D%20%7B%5Cpartial%20x_j%7D%20(%5Cmathrm%7Bx%7D)%20%3D%20%5B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x_j%7D(%5Cmathrm%7Bx%7D)%5D_i 

证明在 https://www.bilibili.com/read/cv24053526 中给出了


引理2 

%5Cfrac%20%7B%5Cpartial%20f_1%7D%7B%5Cpartial%20x_j%7D(%5Cmathrm%7Bx%7D)%20%E5%9C%A8%20%5Cmathrm%7Bx_0%7D%20%E5%A4%84%E8%BF%9E%E7%BB%AD

证明:

%7C%5Cfrac%20%7B%5Cpartial%20f_1%7D%7B%5Cpartial%20x_j%7D(%5Cmathrm%7Bx%7D%2B%5CDelta%20%5Cmathrm%7Bx%7D)%20%20-%20%0A%20%5Cfrac%20%7B%5Cpartial%20f_1%7D%7B%5Cpartial%20x_j%7D(%5Cmathrm%7Bx%7D)%7C%20%20%3D%20%7C%5B%5Cfrac%20%7B%5Cpartial%20f%7D%7B%5Cpartial%20x_j%7D(%5Cmathrm%7Bx%7D%2B%5CDelta%20%5Cmathrm%7Bx%7D)%20%20-%20%0A%20%5Cfrac%20%7B%5Cpartial%20f%7D%7B%5Cpartial%20x_j%7D(%5Cmathrm%7Bx%7D)%5D_1%7C%20

%5Cle%20%20%7C%5Cfrac%20%7B%5Cpartial%20f%7D%7B%5Cpartial%20x_j%7D(%5Cmathrm%7Bx%7D%2B%5CDelta%20%5Cmathrm%7Bx%7D)%20%20-%20%0A%20%5Cfrac%20%7B%5Cpartial%20f%7D%7B%5Cpartial%20x_j%7D(%5Cmathrm%7Bx%7D)%7C%20%5Clt%20%5Cepsilon%20

引理3

f_i(%5Cmathrm%7Bx%7D) 可微

根据引理2 加上 f_i%20%3A%20%5Cmathrm%7BR%7D%5En%20%5Crightarrow%20%5Cmathrm%7BR%7D 从上一篇文章可以证明 f_i 可微

有了引理3 f(%5Cmathrm%7Bx%7D) 可微证明就清晰了

假设有

%5Clim_%7B%5CDelta%20%5Cmathrm%7Bx%7D%20%5Cto%200%7D%5Cfrac%7B%7Cf_i(%5Cmathrm%7Bx%7D%20%2B%20%5CDelta%20%5Cmathrm%7Bx%7D)-f_i(%5Cmathrm%7Bx%7D)-%5Clangle%20%5Calpha_i%2C%5CDelta%5Cmathrm%7Bx%7D%5Crangle%7C%7D%7B%7C%5CDelta%20%5Cmathrm%7Bx%7D%7C%7D%20%3D%200  其中 %5Calpha_i%20%3D%20(%5Cfrac%7B%5Cpartial%20f_i%7D%7B%5Cpartial%20x_1%7D(%5Cmathrm%7Bx%7D)%2C%20%5Cfrac%7B%5Cpartial%20f_i%7D%7B%5Cpartial%20x_2%7D(%5Cmathrm%7Bx%7D)%2C%20..%2C%5Cfrac%7B%5Cpartial%20f_i%7D%7B%5Cpartial%20x_n%7D(%5Cmathrm%7Bx%7D))%5ET


令 L%20%3D%20%5B%5Calpha_1%2C%20%5Calpha_2%2C...%5Calpha_n%5D%5ET

%7Cf(%5Cmathrm%7Bx%7D%20%2B%20%5CDelta%20%5Cmathrm%7Bx%7D%20)%20-%20f(%5Cmathrm%7Bx%7D)%20-L%20%5CDelta%20%5Cmathrm%7Bx%7D%7C%20%5Cle%20%5Csum_%7Bi%3D1%7D%5Em%7C%5Bf(%5Cmathrm%7Bx%7D%20%2B%20%5CDelta%20%5Cmathrm%7Bx%7D%20)%20-%20f(%5Cmathrm%7Bx%7D)%20-L%20%5CDelta%20%5Cmathrm%7Bx%7D%5D_i%7C

%5Cle%20%20%5Csum_%7Bi%3D1%7D%5Em%7Cf_i(%5Cmathrm%7Bx%7D%20%2B%20%5CDelta%20%5Cmathrm%7Bx%7D%20)%20-%20f_i(%5Cmathrm%7Bx%7D)%20-%5Clangle%20%5Calpha_i%20%5CDelta%20%5Cmathrm%7Bx%7D_i%5Crangle%7C%20%5Cle%20m%20%7C%5CDelta%20%5Cmathrm%7Bx%7D%7C%5Cepsilon

于是有

%5Cfrac%7B%7Cf(%5Cmathrm%7Bx%7D%20%2B%20%5CDelta%20%5Cmathrm%7Bx%7D%20)%20-%20f(%5Cmathrm%7Bx%7D)%20-L%20%5CDelta%20%5Cmathrm%7Bx%7D%7C%7D%7B%7C%5CDelta%20%5Cmathrm%7Bx%7D%7C%7D%20%5Clt%20m%5Cepsilon


所以

%5Clim_%7B%5CDelta%20%5Cmathrm%7Bx%7D%20%5Cto%20%5Cmathrm%7B0%7D%7D%5Cfrac%7B%7Cf(%5Cmathrm%7Bx%7D%20%2B%20%5CDelta%20%5Cmathrm%7Bx%7D%20)%20-%20f(%5Cmathrm%7Bx%7D)%20-L%20%5CDelta%20%5Cmathrm%7Bx%7D%7C%7D%7B%7C%5CDelta%20%5Cmathrm%7Bx%7D%7C%7D%20%3D%200

符合了可微的定义

其中 L%3D%5Cbegin%7Bbmatrix%7D%0A%5Cfrac%7B%5Cpartial%20f_1%7D%7B%5Cpartial%20x_1%7D%20%26%20%5Cfrac%7B%5Cpartial%20f_1%7D%7B%5Cpartial%20x_2%7D%20%26%20..%20%20%26%5Cfrac%7B%5Cpartial%20f_1%7D%7B%5Cpartial%20x_n%7D%20%5C%5C%0A%5Cfrac%7B%5Cpartial%20f_2%7D%7B%5Cpartial%20x_1%7D%20%26%20%5Cfrac%7B%5Cpartial%20f_2%7D%7B%5Cpartial%20x_2%7D%20%26..%20%26%5Cfrac%7B%5Cpartial%20f_2%7D%7B%5Cpartial%20x_n%7D%20%5C%5C%0A..%20.%26...%26%20..%26..%5C%5C%0A%5Cfrac%7B%5Cpartial%20f_m%7D%7B%5Cpartial%20x_1%7D%20%26%20%5Cfrac%7B%5Cpartial%20f_m%7D%7B%5Cpartial%20x_2%7D%20%26..%20%26%5Cfrac%7B%5Cpartial%20f_m%7D%7B%5Cpartial%20x_n%7D%20%5C%5C%0A%5Cend%7Bbmatrix%7D


多元函数微分学笔记(2)的评论 (共 条)

分享到微博请遵守国家法律