小象学院预训练模型
2023-03-21 13:35 作者:bili_zx6265745 | 我要投稿
预训练语言模型分类:
单向特征、自回归模型(单向模型):ELMO/ULMFiT/SiATL/GPT1.0/GPT2.0
双向特征、自编码模型(BERT系列模型):BERT/MASS/UNILM/ERNIE1.0/ERNIE(THU)/MTDNN/ERNIE2.0/SpanBERT/RoBERTa
双向特征、自回归模型:XLNet
各模型之间的联系 :
传统word2vec无法解决一词多义,语义信息不够丰富,诞生了ELMO
ELMO以lstm堆积,串行且提取特征能力不够,诞生了GPT
GPT 虽然用transformer堆积,但是是单向的,诞生了BERT
BERT虽然双向,但是mask不适用于自编码模型,诞生了XLNET
BERT中mask代替单个字符而非实体或短语,没有考虑词法结构/语法结构,诞生了ERNIE
为了mask掉中文的词而非字,让BERT更好的应用在中文任务,诞生了BERT-wwm
Bert训练用更多的数据、训练步数、更大的批次,mask机制变为动态的,诞生了RoBERTa
ERNIE的基础上,用大量数据和先验知识,进行多任务的持续学习,诞生了ERNIE2.0
BERT-wwm增加了训练数据集、训练步数,诞生了BERT-wwm-ext
BERT的其他改进模型基本考增加参数和训练数据,考虑轻量化之后,诞生了ALBERT