欢迎光临散文网 会员登陆 & 注册

二阶可导的下凸函数,导数一定非负吗

2023-05-27 17:40 作者:~Sakuno酱  | 我要投稿

是的 下面给出证明

假设函数 f(x)%5Ba%2Cb%5D上下凸,即对任意x_1%2Cx_2%20%5Cin%20%5Ba%2Cb%5D%20f(%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D)%20%5Cle%20%5Cfrac%7Bf(x_1)%2Bf(x_2)%7D%7B2%7D%20

并且f(x)(a%2Cb)上二阶可导

通过定义写出f(x_0)二阶导数

f''(x_0)%20%3D%20%5Clim_%7Bx%20%5Cto%200%7D%5Cfrac%7Bf'(x_0%2Bx)-f'(x_0)%7D%7Bx%7D

f''(x_0)%20%3D%20%5Clim_%7Bx%20%5Cto%200%7D%5Cfrac%7Bf'(x_0-x)-f'(x_0)%7D%7B-x%7D

把上面两个相加得到

2f'(x_0)%20%3D%20%5Clim_%7Bx%20%5Cto%200%7D%5Cfrac%7Bf'(x_0%2Bx)-f'(x_0-x)%7D%7Bx%7D

因为y%3Dx%5E2%20 和 y%3Df(x) 都是一阶可导并且导函数连续 所以可以反向用一下洛必达法则

%5Clim_%7Bx%20%5Cto%200%7D%5Cfrac%7Bf'(x_0%2Bx)-f'(x_0-x)%7D%7Bx%7D%3D%5Clim_%7Bx%20%5Cto%200%7D%5Cfrac%7Bf(x_0%2Bx)%2Bf(x_0-x)-2f(x_0)%7D%7Bx%5E2%7D%5Ccdot2

套用不等式 f(%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D)%20%5Cle%20%5Cfrac%7Bf(x_1)%2Bf(x_2)%7D%7B2%7D%20

得到

%5Cfrac%7Bf(x_0%2Bx)%2Bf(x_0-x)-2f(x_0)%7D%7Bx%5E2%7D%5Ccdot2%20%5Cge%20%5Clim_%7Bx%20%5Cto%200%7D%5Cfrac%7B2f(x_0)-2f(x_0)%7D%7Bx%5E2%7D%5Ccdot2%20%5Cge%200

严谨的话可以构造数列 a_n%20%3D%5Cfrac%7B1%7D%7Bn%7D 把 x 换成a_n 

构造出 g(a_n)%3D%5Cfrac%7Bf(x_0%2Ba_n)%2Bf(x_0-a_n)-2f(x_0)%7D%7Ba_n%5E2%7D 结果就是 g(a_n) 每一项都是非负的

因此 %5Clim_%7Bn%20%5Cto%20%5Cinfty%7Dg(a_n)%20%5Cge%200

所以f''(x_0)%20%5Cge%200


同样二阶导非负也可以证出下凸性

f(x_1)-f(%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D)%20%2Bf(x_2)-%20f(%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D)%20%0A

%3Df(x_2)-%20f(%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D)%20-(%20f(%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D)%20-%20f(x_1)) 

运用拉格朗日中值定理

%3Df'(%5Calpha)%20-f'(%5Cbeta)%20 其中 %5Cbeta%20%5Cle%20%5Calpha

根据一阶导数的单调性

f(x_1)%2Bf(x_2)%20-%202f(%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D)%3D%20f(x_1)-f(%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D)%20%2Bf(x_2)-%20f(%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D)%20%0A%20%5Cge%200

二阶可导的下凸函数,导数一定非负吗的评论 (共 条)

分享到微博请遵守国家法律