欢迎光临散文网 会员登陆 & 注册

对近期做的几道题的点评

2023-10-14 17:47 作者:现代微积分  | 我要投稿

今天稍微有些空闲,于是来回做一下高中题来找自信了[doge]由于评论区空白太小写不下,所以以下几题作为在答区给出的解法后的拓展

例(1):

【24例60】黄冈市2024届高三九月调考11节选,数列易错题

后面经过细心的网友发现,原题存在歧义,这里对条件多加一个限制才严谨:a_%7Bn%2B1%7D%2Ba_n%5Cne%200

由于视频中写了详细过程,这里就点下思路即可

给条件的n换为n+1,然后两式相减利用a_%7Bn%2B1%7D%3DS_%7Bn%2B1%7D-S_n消去Sn

(这是条件中同时含有an和Sn时的常规思路了)

快进到

a_1%3D19%2Ca_%7Bn%2B1%7D-a_n%3D-2~%5Ctext%7Bor%7D~%20a_%7Bn%2B1%7D%2Ba_n%3D%200%5Ctext%7B(%E8%88%8D)%7D

于是%5Cleft%20%5C%7B%20a_n%20%5Cright%20%5C%7D%20是首项为19,公差为-2的等差数列

a_n%3D19-2(n-1)%3D-2n%2B21


答区已经给出了简洁的写法(也就是直接判断bn的正负),这多作一个拓展

ps:不是为了复杂化解决上面的问题,而是同一题可以有不同的提问,遇到相同类似的题可以进行拓展

就是对于这种连续等差的乘积项,其求和式也是初等的,给出以下几个模型以及证明

模型一:连续等差项相乘型

%5Cleft%20%5C%7B%20%20a_n%5Cright%20%5C%7D%20为等差数列,b_n%3Da_%7Bn%7Da_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk%7D

则有:

%5Cbegin%7Balign%7D%0A%26b_%7Bn%2B1%7D-b_n%5C%5C%0A%3D%26%7B%5Ccolor%7BBlue%7D%20%7Ba_%7Bn%2B1%7Da_%7Bn%2B2%7Da_%7Bn%2B3%7D...a_%7Bn%2Bk%7D%7D%7D%20a_%7Bn%2Bk%2B1%7D-a_%7Bn%7D%7B%5Ccolor%7BBlue%7D%20%7Ba_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk-1%7Da_%7Bn%2Bk%7D%7D%7D%20%5C%5C%0A%3D%26(a_%7Bn%2Bk%2B1%7D-a_n)(%7B%5Ccolor%7BBlue%7D%20%7Ba_%7Bn%2B1%7Da_%7Bn%2B2%7Da_%7Bn%2B3%7D...a_%7Bn%2Bk%7D%7D%7D%20)%5C%5C%0A%3D%26(k%2B1)d(a_%7Bn%2B1%7Da_%7Bn%2B2%7Da_%7Bn%2B3%7D...a_%7Bn%2Bk%7D)%0A%5Cend%7Balign%7D

整理得:

c_n%3Da_%7Bn%2B1%7Da_%7Bn%2B2%7Da_%7Bn%2B3%7D...a_%7Bn%2Bk%7D%3D%5Cfrac%7B1%7D%7B(k%2B1)d%7D(b_%7Bn%2B1%7D-b_n)%20

那么这个新数列cn就可以用裂项相消了。观察其形式可知,其比bn少了个an,比b(n+1)少了个a(n+k+1),因此对于这种等差连乘型的数列求和,关键步骤就是往最左/最右各多找一项,然后构造裂项即可


回到该题,b_n%3D%20(-2n%2B21)(-2n%2B19)(-2n%2B17)

c_n%3D(-2n%2B23)(-2n%2B21)(-2n%2B19)(-2n%2B17)

则有:

%5Cbegin%7Balign%7D%0A%26c_%7Bn%2B1%7D-c_n%5C%5C%0A%3D%26%7B%5Ccolor%7BBlue%7D%20%7B(-2n%2B21)(-2n%2B19)(-2n%2B17)%7D%7D%20(-2n%2B15)%5C%5C%0A-%26(-2n%2B23)%7B%5Ccolor%7BBlue%7D%20%7B(-2n%2B21)(-2n%2B19)(-2n%2B17)%7D%7D%20%5C%5C%0A%3D%26-8%7B%5Ccolor%7BBlue%7D%20%7B(-2n%2B21)(-2n%2B19)(-2n%2B17)%7D%7D%20%5C%5C%0A%3D%26-8b_n%20%0A%5Cend%7Balign%7D

于是

b_n%3D-%5Cfrac%7B1%7D%7B8%7D%20(c_%7Bn%2B1%7D-c_n)

两边求和得:

%5Cbegin%7Balign%7D%0AT_n%26%3Dc_%7Bn%2B1%7D-c_1%5C%5C%0A%26%3D%5Cbbox%5B%23CFF%2C5px%5D%7B(-2n%2B21)(-2n%2B19)(-2n%2B17)(-2n%2B15)%7D%5C%5C%0A%26%5Cbbox%5B%23CFF%2C5px%5D%7B-21%5Ctimes%2019%5Ctimes%2017%5Ctimes%2015%7D%0A%5Cend%7Balign%7D


附上一道练习题:

22年佛山二模数列题

第二问答案:(4n³+6n²-n)/3


再进一步拓展,如果是多项式型数列的求和,其有一般方法,可自行搜索"自然数等幂和问题"

模型二:连续等差项相乘取倒数型

%5Cleft%20%5C%7B%20%20a_n%5Cright%20%5C%7D%20为等差数列,b_n%3D%5Cfrac%7B1%7D%7Ba_%7Bn%7Da_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk%7D%7D%20

%5Cbegin%7Balign%7D%0A%26b_%7Bn%2B1%7D-b_n%5C%5C%0A%3D%26%5Cfrac%7B1%7D%7B%7B%5Ccolor%7BBlue%7D%7B%20a_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk%7D%7D%7D%20a_%7Bn%2Bk%2B1%7D%7D%20%20-%5Cfrac%7B1%7D%7Ba_%7Bn%7D%7B%5Ccolor%7BBlue%7D%20%7Ba_%7Bn%2B1%7D...a_%7Bn%2Bk-1%7Da_%7Bn%2Bk%7D%7D%7D%20%20%7D%20%5C%5C%0A%3D%26%5Cfrac%7Ba_n-a_%7Bn%2Bk%2B1%7D%7D%7B%7B%20a_na_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk%7D%7D%20a_%7Bn%2Bk%2B1%7D%7D%20%5C%5C%0A%3D%26%5Cfrac%7B-(k%2B1)d%7D%7B%7B%20a_na_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk%7D%7D%20a_%7Bn%2Bk%2B1%7D%7D%0A%5Cend%7Balign%7D

整理得:

c_n%3D%5Cfrac%7B1%7D%7B%7B%20a_na_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk%7D%7D%20a_%7Bn%2Bk%2B1%7D%7D%3D%5Cfrac%7B1%7D%7B-(k%2B1)d%7D%20(b_%7Bn%2B1%7D-b_n)

那么这个新数列cn就可以用裂项相消了。观察其形式可知,其分母比bn多了个a(n+k+1);其分母b(n+1)少了个an,因此对于这种等差连乘取倒数型的数列求和,关键步骤就是往最左/最右各多去一项,然后构造裂项即可


例子:求a_n%3D%5Cfrac%7B1%7D%7B(2n%2B1)(2n%2B3)(2n%2B5)%7D%20的前n项和S_n

b_n%3D%5Cfrac%7B1%7D%7B(2n%2B1)(2n%2B3)%7D%20,则有:

%5Cbegin%7Balign%7D%0A%26b_%7Bn%2B1%7D-b_n%5C%5C%0A%3D%26%5Cfrac%7B1%7D%7B(2n%2B3)(2n%2B5)%7D%20-%5Cfrac%7B1%7D%7B(2n%2B1)(2n%2B3)%7D%5C%5C%0A%3D%26%20%5Cfrac%7B-4%7D%7B(2n%2B1)(2n%2B3)(2n%2B5)%7D%5C%5C%0A%3D%26-4a_n%0A%5Cend%7Balign%7D

整理得:a_n%3D-%5Cfrac%7B1%7D%7B4%7D(b_%7Bn%2B1%7D-b_n)%20

求和得:

%5Cbegin%7Balign%7D%0AS_n%26%3D-%5Cfrac%7B1%7D%7B4%7D(b_%7Bn%2B1%7D-b_1)%5C%5C%0A%26%3D%5Cbbox%5B%23CFF%2C5px%5D%7B-%5Cfrac%7B1%7D%7B4%7D%5B%5Cfrac%7B1%7D%7B(2n%2B3)(2n%2B5)%7D%20-%5Cfrac%7B1%7D%7B15%7D%20%5D%7D%0A%5Cend%7Balign%7D


例子的话去年的一张金太阳模拟(摸底考)卷考到了,但是不太记得线索所以没搜到就不贴了,总之这裂项在试卷上考到过。还有一道题是结合“莱布尼兹三角形”来考的,那张试卷估计早就扔了[doge]

在此基础上,我又回忆起有一道高考题就用到了这种裂项

相当于是对巴塞尔问题上确界π²/6的估计。放缩这一步就又是重点了,由于篇幅原因就先不作讲解了,先当练习~

还有一道是三角函数的小题~

【每日一题】当三角函数单调时,ω的取值范围

这题up主是用局部图(也就是直接用f(x)的图)来做的,还用了求导,未免显得麻烦了些,因此这里给出更常用的换元法来做

t%3D%5Comega%20x-%5Cfrac%7B%5Cpi%20%7D%7B6%7D,则需函数y%3D%5Csin%20tt%5Cin%20(-%5Cfrac%7B%5Cpi%20%7D%7B3%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)上单调

ps:这是由于复合函数单调性的"同增异减",内层函数t%3D%5Comega%20x-%5Cfrac%7B%5Cpi%20%7D%7B6%7Dx%5Cin%20(-%5Cfrac%7B%5Cpi%20%7D%7B3%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B6%7D)时单增,因此外层函数y%3D%5Csin%20t需在t%5Cin%20(-%5Cfrac%7B%5Cpi%20%7D%7B3%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)上单调

因此下面画出y%3D%5Csin%20t的图像进行讨论:

作出直观的图后,就可以以一种"动态思想"去分析问题了

%5Comega由0开始增大时,区间左端点-%5Cfrac%7B%5Cpi%20%7D%7B3%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D-%5Cfrac%7B%5Cpi%20%7D%7B6%7D开始向左运动

而区间右端点%5Cfrac%7B%5Cpi%20%7D%7B6%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D-%5Cfrac%7B%5Cpi%20%7D%7B6%7D开始向右运动

因此-%5Cfrac%7B%5Cpi%20%7D%7B6%7D这就在区间里面,那么只能是t%5Cin%20%5B-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%2C%5Cfrac%7B%5Cpi%20%7D%7B2%7D%5D这个递增区间了

于是有%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A-%5Cfrac%7B%5Cpi%20%7D%7B3%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cgeqslant%20-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5C%5C%0A%5Cfrac%7B%5Cpi%20%7D%7B6%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cleqslant%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D%0A%5Cend%7Bmatrix%7D%5Cright.%0A%5CRightarrow%20%5Comega%20%5Cleqslant%201

%20%5Comega%20的取值范围为:(0%2C1%5D

好了,加大一下难度,那么这道题我把题干区间改为x%5Cin%20(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D)单调,那么该怎么做呢?

方法是一样的,依旧是换元

t%3D%5Comega%20x-%5Cfrac%7B%5Cpi%20%7D%7B6%7D,则需函数y%3D%5Csin%20tt%5Cin%20(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)上单调


%5Comega由0开始增大时,区间左端点%5Cfrac%7B%5Cpi%20%7D%7B10%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D-%5Cfrac%7B%5Cpi%20%7D%7B6%7D开始向右运动

而区间右端点%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D-%5Cfrac%7B%5Cpi%20%7D%7B6%7D开始向右运动

这里就跟上一题有些区间,也是增加了难度的地方:上一题中两端点是异向运动的(一个向左移另一个向右移);而这一题两端点是同向运动的(这里两个端点都向右移,且右端点移动幅度更大,这是由于%5Cfrac%7B%5Cpi%20%7D%7B9%7D%3E%5Cfrac%7B%5Cpi%20%7D%7B10%7D)

因此这里就会出现多种情况需要分类讨论,如:

区间(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)%0A%5Csubseteq%20(-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2C%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D)


区间(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)%0A%5Csubseteq%20(%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2C%20%5Cfrac%7B3%5Cpi%20%7D%7B2%7D)


区间(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)%0A%5Csubseteq%20(%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%2C%20%5Cfrac%7B5%5Cpi%20%7D%7B2%7D)

以此类推,需要进行多轮的讨论

而情况不是无数的,因为两端点在向右运动的过程中,由于起点均为-%5Cfrac%7B%5Cpi%20%7D%7B6%7D,而右端点运动速度始终比左端点运动速度大(即%5Cfrac%7B%5Cpi%20%7D%7B9%7D%3E%5Cfrac%7B%5Cpi%20%7D%7B10%7D),因此区间长度也在增大,当%5Comega%20充分大时,区间长度>半个周期(即%5Cboxed%7B(%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)-(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)%3E%5Cpi%7D%20),那么随后这个区间就无法再含于任何一个单调区间

也即上面方框框住的这个式子是其中一个必要条件

当然这个也可以不需要解,后面的分类解不等式时会包含于此,下面的步骤才是关键的:

通过前面的数形结合分析知,第一种情况是(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)%0A%5Csubseteq%20(-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2C%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D),那么这时就需要满足:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cleqslant%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5C%5C%0A%5Cfrac%7B%5Cpi%20%7D%7B10%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cgeqslant%20-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%0A%5Cend%7Bmatrix%7D%5Cright.%0A%5Cstackrel%7B%5Comega%20%3E0%7D%7B%5CLongrightarrow%20%7D%20%5Comega%5Cin%20(0%2C6%5D


第二种情况是(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)%0A%5Csubseteq%20(%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2C%20%5Cfrac%7B3%5Cpi%20%7D%7B2%7D),那么这时就需要满足:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cleqslant%20%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%20%20%5C%5C%0A%5Cfrac%7B%5Cpi%20%7D%7B10%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cgeqslant%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%0A%5Cend%7Bmatrix%7D%5Cright.%0A%5CLongrightarrow%20%5Comega%5Cin%20%5B%5Cfrac%7B20%7D%7B3%7D%2C15%5D


...以此类推,我们发现解不等式的步骤是一样的,因此我们可以先概括单调区间的一般形式:

(-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2Bk%5Cpi%20%2C%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2Bk%5Cpi%20%20)%2Ck%5Cin%20%5Cmathbb%7BN%7D

ps:至于k取负整数的情况就无需考虑了,因为两端点都是由-%5Cfrac%7B%5Cpi%20%7D%7B6%7D开始向右运动,因此在区间(-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%2C%5Cfrac%7B%5Cpi%20%7D%7B2%7D)左边的区间就到不了无需考虑了

t%5Cin%20(-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2Bk%5Cpi%20%2C%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2Bk%5Cpi%20%20)%2Ck%5Cin%20%5Cmathbb%7BN%7D时,分别需满足:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cleqslant%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2Bk%5Cpi%20%5C%5C%0A%5Cfrac%7B%5Cpi%20%7D%7B10%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cgeqslant%20-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2Bk%5Cpi%0A%5Cend%7Bmatrix%7D%5Cright.%0A%5CLongrightarrow%20%0A%7B%5Ccolor%7BBlue%7D%20%7B%5Comega%5Cin%20%5B-%5Cfrac%7B10%7D%7B3%7D%2B10k%20%20%2C6%2B9k%20%5D%7D%7D%20

也即取特定的k(让区间属于其中一个单调区间)时对应的ω的取值范围

要保证区间非空,则需-%5Cfrac%7B10%7D%7B3%7D%2B10k%20%3C6%2B9k%5CRightarrow%20%20k%3C%5Cfrac%7B28%7D%7B3%7D%20

该范围内的自然数解有:0,1,2,3,...,9

于是分别讨论(将此时的k代入上面标蓝的那个区间中),最后再并起来,即有:

(1)当k=0时,%5Comega%5Cin%20(0%2C6%5D

(2)当k=1时,%5Comega%5Cin%5B%5Cfrac%7B20%7D%7B3%7D%2C15%5D

....

(10)当k=9时,%5Comega%5Cin%20%5B%5Cfrac%7B260%7D%7B3%7D%2C87%5D

综上,ω的取值范围为:

%5Cbbox%5B%23CFF%2C5px%5D%7B%5Cbegin%7Balign%7D%0A%26(0%2C6%5D%5Ccup%20%5B%5Cfrac%7B20%7D%7B3%7D%2C15%5D%5Ccup%5B%5Cfrac%7B50%7D%7B3%7D%2C24%5D%5Ccup%5B%5Cfrac%7B80%7D%7B3%7D%2C33%5D%5Ccup%5B%5Cfrac%7B110%7D%7B3%7D%2C42%5D%5C%5C%0A%26%5Ccup%5B%5Cfrac%7B140%7D%7B3%7D%2C51%5D%5Ccup%5B%5Cfrac%7B170%7D%7B3%7D%2C60%5D%5Ccup%5B%5Cfrac%7B200%7D%7B3%7D%2C69%5D%5Ccup%5B%5Cfrac%7B230%7D%7B3%7D%2C78%5D%5Ccup%5B%5Cfrac%7B260%7D%7B3%7D%2C87%5D%0A%5Cend%7Balign%7D%7D


这题出的情况有些多哈哈,怪出题时没有"题德"(具体可以修改题目让原区间间隔宽些,讨论的次数就会少些),但掌握思路是必须的


然后这里有必要给大家一些小提醒,就是上面篇幅较长,主观上会让人觉得没有想看下去的欲望(bushi),而实际上的书写过程就几行而已。另一方面而言,这是对分析的详细分析,带读者一步步进行梳理,我觉得既然是讲题,那么我认为思路一步步讲清楚是前提,在此前提下再进行高度浓缩,因此“言简意赅”并不是很容易达到的程度


附上一道思考题:

这是以前一位网友问的一道难题,跟此类题相关所以拿出来分享了

结合上面的思路,这里就只给出关键步骤了:

t%3D%5Comega%20x%2B%5Cfrac%7B%5Cpi%20%7D%7B3%7D%20,则需y%3D%5Csin%20tt%5Cin%20%5B%5Cfrac%7B%5Cpi%20%7D%7B3%7D%5Comega%20%2B%5Cfrac%7B%5Cpi%20%7D%7B3%7D%2C%20%5Cpi%20%5Comega%20%2B%5Cfrac%7B%5Cpi%20%7D%7B3%7D%5D上有3个零点

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A0%2Bk%5Cpi%20%3C%5Cfrac%7B%5Cpi%20%7D%7B3%7D%5Comega%20%2B%20%5Cfrac%7B%5Cpi%20%7D%7B3%7D%5Cleqslant%20%5Cpi%2Bk%5Cpi%20%20%20%5C%5C%0A3%5Cpi%2Bk%5Cpi%20%5Cleqslant%5Cpi%20%5Comega%20%2B%20%5Cfrac%7B%5Cpi%20%7D%7B3%7D%3C4%5Cpi%20%2Bk%5Cpi%20%0A%5Cend%7Bmatrix%7D%5Cright.%2Ck%5Cin%20%5Cmathbb%7BN%7D

(即包含(k%2B1)%5Cpi%20%2C(k%2B2)%5Cpi%20%2C(k%2B3)%5Cpi%20)

ps:这里要留意不等号能否带等的问题,要使得区间严格包含相邻的3个零点(不少也不多)

解得:%5Cbbox%5B%23CFF%2C5px%5D%7B%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A3k-1%20%3C%5Comega%20%5Cleqslant%202%2B3k%20%20%20%5C%5C%0A%5Cfrac%7B8%7D%7B3%7D%2Bk%20%5Cleqslant%20%5Comega%3C%5Cfrac%7B11%7D%7B3%7D%20%2Bk%0A%5Cend%7Bmatrix%7D%5Cright.%7D

要让其解集非空(即二者有交集),则需:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A3k-1%3C%5Cfrac%7B11%7D%7B3%7D%2Bk%20%20%5C%5C%0A2%2B3k%5Cgeqslant%20%5Cfrac%7B8%7D%7B3%7D%20%2Bk%0A%5Cend%7Bmatrix%7D%5Cright.%0A%5CRightarrow%20%0A%5Cfrac%7B1%7D%7B3%7D%20%5Cleqslant%20k%3C%5Cfrac%7B7%7D%7B3%7D%20

此范围内的自然数解有:k=1,2

当k=1时,解集为:%5Cfrac%7B11%7D%7B3%7D%20%5Cleqslant%20%5Comega%20%3C%5Cfrac%7B14%7D%7B3%7D%20

当k=2时,解集为:5%20%3C%5Comega%20%3C%5Cfrac%7B17%7D%7B3%7D%20

综上,ω的取值范围为:%5Cbbox%5B%23CFF%2C5px%5D%7B%5B%5Cfrac%7B11%7D%7B3%7D%20%2C%5Cfrac%7B14%7D%7B3%7D%20)%5Ccup%20(5%2C%5Cfrac%7B17%7D%7B3%7D%20)%7D

故选C

这是在三角函数小题里比较难的一道题了,但如果严格按上面的分析流程走,每一步都认真完成也能完美地做出来。我认为这类题分析的关键在于画出整体图后对区间端点的讨论(要以动态思想去分析区间的变化(端点左移还是右移))

正如数学家华罗庚所言:"数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休。"




对近期做的几道题的点评的评论 (共 条)

分享到微博请遵守国家法律