欢迎光临散文网 会员登陆 & 注册

固体物理中扩散方程两种边界条件的求解

2023-08-19 10:39 作者:回忆早已抹去6  | 我要投稿

固体物理中一维扩散方程的泛定方程为

%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20t%7D%3DD%5Cfrac%7B%5Cpartial%5E2%20C%7D%7B%5Cpartial%20x%5E2%7D%2C

第一类边界条件为在单位面积上有Q个粒子欲向晶体内部单方向扩散,即

%5Cbegin%7Balign%7Dt%26%3D0%2Cx%3D0%2CC_0%3DQ%2C%5C%5Ct%26%3D0%2Cx%3E0%2CC(x)%3D0%3B%5C%5C%5Cend%7Balign%7D

而且时间足够长时,晶体内部的扩散粒子总数为 Q,满足这些条件的扩散方程的解为

C(x%2Ct)%3D%5Cfrac%7BQ%7D%7B%5Csqrt%7B%5Cpi%20Dt%7D%7D%5Cmathrm%7Be%7D%5E%7B-x%5E2%2F4Dt%7D%2C

第二类边界条件为扩散粒子在晶体表面维持一个不变浓度 C_0,即

%5Cbegin%7Balign%7D%20%26t%5Cgeq0%2Cx%3D0%2CC%3DC_0%3B%5C%5C%26t%3D0%2Cx%3E0%2CC%3D0.%20%20%20%20%5Cend%7Balign%7D

在此条件下扩散方程的解为

C(x%2Ct)%3DC_0%5B1-%5Cfrac%7B2%7D%7B%5Csqrt%5Cpi%7D%5Cint_%7B0%7D%5E%7Bx%2F2%7D%5Cmathrm%7Be%7D%5E%7B-%5Cxi%5E2%7D%5Cmathrm%7Bd%7D%5Cxi%5D.

在许多固体物理教材中都给出了以上结果,但它们都没有给出具体的证明过程,本文给出在这两个条件下对扩散方程的求解过程.

第一类边界条件的求解

由泛定方程和边界条件可得到定解问题:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20t%7D%3DD%5Cfrac%7B%5Cpartial%5E2%20C%7D%7B%5Cpartial%20x%5E2%7D%2C%20%5C%5CC%7C_%7Bx%3D0%2Ct%3D0%7D%3DQ%2C%20%20%5C%5CC%7C_%7Bt%3D0%7D%3D0%2C(x%3E0)%20%20%5Cend%7Bmatrix%7D%5Cright. 

这是半无界问题,最方便的方法是傅里叶积分变换法. F%5BC(x%2Ct)%5D%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7DC(x%2Ct)%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dx%3D%5Ctilde%7BC%7D(k%2Ct)%2C

将泛定方程左右两边同乘%5Cmathrm%7Be%7D%5E%7B%5Cmathrm%7Bi%7Dkx%7D并对x积分

%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20t%7D%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dx%3DD%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%5Cpartial%5E2%20C%7D%7B%5Cpartial%20x%5E2%7D%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dx%2C 

其中

%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20t%7D%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dx%3D%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20t%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7DC%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dx%3D%5Cfrac%7B%5Cpartial%20%5Ctilde%7BC%7D%7D%7B%5Cpartial%20t%7D%2C

%20%5Cbegin%7Balign%7D%20%26D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%5Cpartial%5E2%20C%7D%7B%5Cpartial%20x%5E2%7D%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dx%5C%5C%26%3DD%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7D(%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20x%7D)%5C%5C%20%26%3DD(%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20x%7D%7C_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D-%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20x%7D%5Cmathrm%7Bd%7D%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D)%5C%5C%20%26%3DD(%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20x%7D%7C_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%2B%5Cmathrm%7Bi%7Dk%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20x%7D%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dx)%5C%5C%20%26%3DD(%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20x%7D%7C_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%2B%5Cmathrm%7Bi%7Dk%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7DC)%5C%5C%26%3DD%5B%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20x%7D%7C_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%2B%5Cmathrm%7Bi%7Dk(%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7DC%7C_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D-%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7DC%5Cmathrm%7Bd%7D%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D)%5D%5C%5C%26%3DD(%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20x%7D%7C_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%2B%5Cmathrm%7Bi%7Dk%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7DC%7C_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%2B%5Cmathrm%7Bi%7Dk%5Ccdot%5Cmathrm%7Bi%7Dk%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7DC%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dx)%5C%5C%20%26%3DD(%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20x%7D%7C_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%2B%5Cmathrm%7Bi%7Dk%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7DC%7C_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D-k%5E2%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7DC%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dx)%2C%20%20%5Cend%7Balign%7D 

粒子扩散不到无穷远处,即

%5Cbegin%7Balign%7D%26%5Clim_%7Bx%5Crightarrow%5Cpm%5Cinfty%7DC%3D0%2C(%E6%97%A0%E7%A9%B7%E8%BF%9C%E5%A4%84%E6%B5%93%E5%BA%A6%E4%B8%BA%E9%9B%B6)%5C%5C%26%5Clim_%7Bx%5Crightarrow%5Cpm%5Cinfty%7D%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20x%7D%3D0%2C(%E6%97%A0%E7%A9%B7%E8%BF%9C%E5%A4%84%E6%B5%93%E5%BA%A6%E8%BF%91%E4%BC%BC%E4%B8%BA%E9%9B%B6%EF%BC%8C%E4%B8%80%E9%98%B6%E5%AF%BC%E6%95%B0%E4%BA%A6%E8%BF%91%E4%BC%BC%E4%B8%BA%E9%9B%B6)%5Cend%7Balign%7D.

%5Ctilde%7BC%7D(k%2Ct)%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7DC(x%2Ct)%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dx%2C

%5CRightarrow%20D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%5Cpartial%5E2C%7D%7B%5Cpartial%20x%5E2%7D%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dx%3D-Dk%5E2%5Ctilde%7BC%7D%2C

即泛定方程在傅里叶变换下变为了常微分方程

%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctilde%7BC%7D%7D%7B%5Cmathrm%7Bd%7Dt%7D%2BDk%5E2%5Ctilde%7BC%7D%3D0%2C

由边界条件,不妨对边界条件作偶延拓,边界条件可表示为(0%5E%2B贡献一个Q0%5E-贡献一个Q,一共为2Q

C%7C_%7Bt%3D0%7D%3D2Q%5Cdelta(x)%2C 

对上式作傅里叶变换

%5Ctilde%7BC%7D%7C_%7Bt%3D0%7D%3D%5CPhi(k)%2C

其中%5CPhi(k)2Q%5Cdelta(x)的傅里叶变换,则%5Ctilde%7BC%7D的微分方程与上式组成的定解问题的通解为

%5Ctilde%7BC%7D(k%2Ct)%3D%5CPhi(k)%5Cmathrm%7Be%7D%5E%7B-k%5E2Dt%7D%2C

再进行傅里叶逆变换

%5Cbegin%7Balign%7D%20%20C(x%2Ct)%26%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5CPhi(k)%5Cmathrm%7Be%7D%5E%7B-k%5E2Dt%7D%5Cmathrm%7Be%7D%5E%7B%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dk%5C%5C%20%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5B%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D2Q%5Cdelta(%5Cxi)%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7Dk%5Cxi%7D%5Cmathrm%7Bd%7D%5Cxi%5D%5Cmathrm%7Be%7D%5E%7B-k%5E2Dt%7D%5Cmathrm%7Be%7D%5E%7B%5Cmathrm%7Bi%7Dkx%7D%5Cmathrm%7Bd%7Dk%2C%20%20%20%20%20%20%20%5Cend%7Balign%7D 

交换积分次序

C(x%2Ct)%3D%5Cfrac%7BQ%7D%7B%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cdelta(%5Cxi)%5B%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cmathrm%7Be%7D%5E%7B-k%5E2Dt%7D%5Cmathrm%7Be%7D%5E%7B%5Cmathrm%7Bi%7Dk(x-%5Cxi)%7D%5Cmathrm%7Bd%7Dk%5D%5Cmathrm%7Bd%7D%5Cxi%2C

为了求出上述积分,我们先考察如下形式的积分

%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cmathrm%7Be%7D%5E%7B%5Calpha%5E2k%5E2%2B%5Cbeta%20k%7D%5Cmathrm%7Bd%7Dk%3D%20%5Cmathrm%7Be%7D%5E%7B%5Cfrac%7B%5Cbeta%5E2%7D%7B4%5Calpha%5E2%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Cmathrm%7Be%7D%5E%7B-%5Calpha%5E2(k-%5Cfrac%7B%5Cbeta%7D%7B2%5Calpha%5E2%7D)%5E2%7D%5Cmathrm%7Bd%7Dk%2C

为了求解上述积分,令%5Cxi%3Dk-%5Cfrac%7B%5Cbeta%7D%7B2%5Calpha%5E2%7D,有

%5Cbegin%7Balign%7D%20%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Cmathrm%7Be%7D%5E%7B-%5Calpha%5E2%5Cxi%5E2%7D%5Cmathrm%7Bd%7D%5Cxi%26%3D%5Cfrac%7B1%7D%7B%5Calpha%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Cmathrm%7Be%7D%5E%7B-%5Calpha%5E2%5Cxi%5E2%7D%5Cmathrm%7Bd%7D(%5Calpha%20%5Cxi)%5C%5C%26%3D%5Cfrac%7B1%7D%7B%5Calpha%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Cmathrm%7Be%7D%5E%7B-x%5E2%7D%5Cmathrm%7Bd%7Dx%5C%5C%26%3D%5Cfrac%7B1%7D%7B%5Calpha%7D%5Ccdot%20I%2C%20%20%20%20%5Cend%7Balign%7D

其中

%5Cbegin%7Balign%7D%20I%5E2%26%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%5Cmathrm%7Be%7D%5E%7B-x%5E2%7D%5Cmathrm%7Bd%7Dx%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%5Cmathrm%7Be%7D%5E%7B-y%5E2%7D%5Cmathrm%7Bd%7Dy%5C%5C%26%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Cmathrm%7Be%7D%5E%7B-(x%5E2%2By%5E2)%7D%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%5C%5C%26%3D%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%5Cmathrm%7Be%7D%5E%7B-r%5E2%7Dr%5Cmathrm%7Bd%7Dr%5Cmathrm%7Bd%7D%5Ctheta%5C%5C%26%3D2%5Cpi%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%5Cmathrm%7Be%7D%5E%7B-r%5E2%7Dr%5Cmathrm%7Bd%7Dr%5C%5C%26%3D%5Cpi%2C%20%5Cend%7Balign%7D

%5Cbegin%7Balign%7D%20%26%5CRightarrow%20I%3D%5Csqrt%7B%5Cpi%7D%2C%5C%5C%26%5CRightarrow%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cmathrm%7Be%7D%5E%7B-%5Calpha%5E2%5Cxi%5E2%7D%5Cmathrm%7Bd%7D%5Cxi%3D%5Cfrac%7B%5Csqrt%7B%5Cpi%7D%7D%7B%5Calpha%7D%2C%5C%5C%26%5CRightarrow%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Cmathrm%7Be%7D%5E%7B-%5Calpha%5E2k%5E2%2B%5Cbeta%20k%7D%5Cmathrm%7Bd%7Dk%3D%5Cfrac%7B%5Csqrt%7B%5Cpi%7D%7D%7B%5Calpha%7D%5Cmathrm%7Be%7D%5E%7B%5Cfrac%7B%5Cbeta%5E2%7D%7B4%5Calpha%5E2%7D%7D%2C%20%5Cend%7Balign%7D

运用上述公式,我们就能得到前面C(x%2Ct)积分的结果,令C(x%2Ct)积分中的%5Calpha%3D%5Csqrt%7BDt%7D%2C%5Cbeta%3D%5Cmathrm%7Bi%7D(x-%5Cxi)积分化为 

%5Cbegin%7Balign%7D%20C(x%2Ct)%26%3D%5Cfrac%7BQ%7D%7B%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Cdelta(%5Cxi)%5B%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Cmathrm%7Be%7D%5E%7B-k%5E2%5Calpha%5E2%2B%5Cbeta%20k%7D%5Cmathrm%7Bd%7Dk%5D%5Cmathrm%7Bd%7D%5Cxi%5C%5C%26%3D%5Cfrac%7BQ%7D%7B%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cdelta(%5Cxi)%5Cfrac%7B%5Csqrt%7B%5Cpi%7D%7D%7B%5Calpha%7D%5Cmathrm%7Be%7D%5E%7B%5Cfrac%7B%5Cbeta%5E2%7D%7B4%5Calpha%5E2%7D%7D%5Cmathrm%7Bd%7D%5Cxi%5C%5C%26%3D%5Cfrac%7BQ%7D%7B%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cdelta(%5Cxi)%5Csqrt%7B%5Cfrac%7B%5Cpi%7D%7BDt%7D%7D%5Cmathrm%7Be%7D%5E%7B-%5Cfrac%7B(x-%5Cxi)%5E2%7D%7B4Dt%7D%7D%5Cmathrm%7Bd%7D%5Cxi%5C%5C%26%3D%5Cfrac%7BQ%7D%7B%5Cpi%7D%5Csqrt%7B%5Cfrac%7B%5Cpi%7D%7BDt%7D%7D%5Cmathrm%7Be%7D%5E%7B-%5Cfrac%7Bx%5E2%7D%7B4Dt%7D%7D%5C%5C%26%3D%5Cfrac%7BQ%7D%7B%5Csqrt%7B%5Cpi%20Dt%7D%7D%5Cmathrm%7Be%7D%5E%7B-%5Cfrac%7Bx%5E2%7D%7B4Dt%7D%7D.%20%5Cend%7Balign%7D


这就是扩散方程在第一轮边界条件下的求解.

第二类边界条件的求解

对于第二类边界条件的求解,在梁昆淼教授所著《数学物理方法 》 §13.1 的例5进行了详细的求解,原文如下



固体物理中扩散方程两种边界条件的求解的评论 (共 条)

分享到微博请遵守国家法律