欢迎光临散文网 会员登陆 & 注册

几类特殊递推数列的矩阵算法(下篇)

2023-08-14 12:20 作者:现代微积分  | 我要投稿

前言

又“抛弃”了b站几天,再次回来更这搁置的下篇。

这次我们要谈的是一阶分式递推。

在此之前,我们要讲讲一阶分式函数y%3D%5Cfrac%7B%5Ctext%7B~%7Dx%2B%5Ctext%7B~%7D%7D%7B%5Ctext%7B~%7Dx%2B%5Ctext%7B~%7D%7D%20(~表系数)的复合运算


f(x)%3D%5Cfrac%7Ba_1x%2Ba_2%7D%7Ba_3x%2Ba_4%7D%20g(x)%3D%5Cfrac%7Ba_5x%2Ba_6%7D%7Ba_7x%2Ba_8%7D%20

则有:

%5Cbegin%7Balign%7D%20g(f(x))%26%3D%5Cfrac%7Ba_5(%5Cfrac%7Ba_1x%2Ba_2%7D%7Ba_3x%2Ba_4%7D%20)%2Ba_6%7D%7Ba_7(%5Cfrac%7Ba_1x%2Ba_2%7D%7Ba_3x%2Ba_4%7D%20)%2Ba_8%7D%20%5C%5C%20%26%3D%5Cfrac%7Ba_5(a_1x%2Ba_2)%2Ba_6(a_3x%2Ba_4)%7D%7Ba_7(a_1x%2Ba_2)%2Ba_8(a_3x%2Ba_4)%7D%20%5C%5C%20%26%3D%5Cfrac%7B(a_1a_5%2Ba_3a_6)x%2B(a_2a_5%2Ba_4a_6)%7D%7B(a_1a_7%2Ba_3a_8)x%2B(a_2a_7%2Ba_4a_8)%7D%20%20%5Cend%7Balign%7D

诶?我们看这系数的变化,这跟矩阵的乘法非常类似耶!

记矩阵F%3D%5Cbegin%7Bbmatrix%7D%20%20a_1%20%26a_2%20%5C%5C%20%20a_3%20%26a_4%20%5Cend%7Bbmatrix%7DG%3D%5Cbegin%7Bbmatrix%7D%20%20a_5%20%26a_6%20%5C%5C%20%20a_7%20%26a_8%20%5Cend%7Bbmatrix%7D

G%5Ccdot%20F%3D%20%5Cbegin%7Bbmatrix%7D%20a_1a_5%2Ba_3a_6%20%20%26a_2a_5%2Ba_4a_6%20%5C%5C%20a_1a_7%2Ba_3a_8%20%20%26a_2a_7%2Ba_4a_8%20%5Cend%7Bbmatrix%7D


因此,要算一次分式的复合运算,可以等价为计算其系数矩阵的乘积

即将f(x)%3D%5Cfrac%7Ba_1x%2Ba_2%7D%7Ba_3x%2Ba_4%7D%20类比为%5Cbegin%7Bbmatrix%7D%0A%20f(x)%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D%0Aa_1%20%26a_2%20%5C%5C%0Aa_3%20%26a_4%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Ax%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D

ps:注意这里是“类比”而不是相等,右边矩阵算出的是第1行和第2行分别对于原式中的分子和分母

这是极大的一步突破!目前个人认知有限只通过上述暴算证明了其可类比性,或许有更底层的逻辑尚未挖掘,留予后续思考[滑稽]

举个例子练练手:

已知f(x)%3D%5Cfrac%7Bx%2B1%7D%7B2x%2B3%7D%2Cg(x)%3D%5Cfrac%7B3x-1%7D%7Bx-2%7D%2Ch(x)%3D%5Cfrac%7B-x%2B2%7D%7Bx-3%7D%20%20%20

f(g(h(x)))

写出上述函数对应的系数矩阵:

F%3D%5Cbegin%7Bbmatrix%7D%20%201%20%261%20%5C%5C%20%202%20%263%20%5Cend%7Bbmatrix%7D%2C%20G%3D%5Cbegin%7Bbmatrix%7D%20%203%20%26-1%20%5C%5C%20%201%20%26-2%20%5Cend%7Bbmatrix%7D%2C%20H%3D%5Cbegin%7Bbmatrix%7D%20%20-1%20%262%20%5C%5C%20%201%20%26-3%20%5Cend%7Bbmatrix%7D

根据由里到外的顺序,以此进行矩阵乘法运算

%5Cbegin%7Balign%7D%20%26F%5Ccdot%20G%5Ccdot%20H%5C%5C%20%3D%26%20%5Cbegin%7Bbmatrix%7D%20%201%20%261%20%5C%5C%20%202%20%263%20%5Cend%7Bbmatrix%7D%20%5Ccdot%20%5Cbegin%7Bbmatrix%7D%20%203%20%26-1%20%5C%5C%20%201%20%26-2%20%5Cend%7Bbmatrix%7D%20%5Ccdot%20%5Cbegin%7Bbmatrix%7D%20%20-1%20%262%20%5C%5C%20%201%20%26-3%20%5Cend%7Bbmatrix%7D%5C%5C%20%3D%26%5Cbegin%7Bbmatrix%7D%20%201%20%261%20%5C%5C%20%202%20%263%20%5Cend%7Bbmatrix%7D%20%5Ccdot%20%5Cbegin%7Bbmatrix%7D%20%20-4%20%269%20%5C%5C%20%20-3%20%268%20%5Cend%7Bbmatrix%7D%5C%5C%20%3D%26%5Cbegin%7Bbmatrix%7D%20%20-7%20%2617%20%5C%5C%20%20-17%20%2642%20%5Cend%7Bbmatrix%7D%20%5Cend%7Balign%7D

因此f(g(h(x)))%3D%5Cfrac%7B-7x%2B17%7D%7B-17x%2B42%7D%20

有了以上铺垫,我们就能推导一阶分式递推a_%7Bn%2B1%7D%3D%5Cfrac%7Bc_1a_n%2Bc_2%7D%7Bc_3a_n%2Bc_4%7D%20(c表系数)

f(x)%3D%5Cfrac%7Bc_1x%2Bc_2%7D%7Bc_3x%2Bc_4%7D%20,则a_%7Bn%2B1%7D%3Df(a_n)

于是有:a_2%3Df(a_1)%2Ca_3%3Df(a_2)%3Df(f(a_1))

a_4%3Df(a_3)%3Df(f(f(a_1)))

以此类推,我们发现,求下一项就是把上一项的值代回函数f(x)的自变量x中,要求a_n就要对函数f(x)自身复合n-1次。而f(x)是一阶分式函数,根据上面的推导,我们可将复合运算等价为矩阵运算来研究。由于是自身复合,所以复合n-1次,那么矩阵就乘以n-1次方

举个例子,已知a_1%3D1a_%7Bn%2B1%7D%3D%5Cfrac%7B-2a_n-5%7D%7B8a_n-16%7D%20

类比为%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0A%20-2%20%26-5%20%5C%5C%0A8%20%20%26-16%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D

于是构成递推

%5Cbegin%7Balign%7D%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%0A%26%3D%5Cbegin%7Bbmatrix%7D%0A%20-2%20%26-5%20%5C%5C%0A8%20%20%26-16%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%5C%5C%0A%26%3D%5Cbegin%7Bbmatrix%7D%0A%20-2%20%26-5%20%5C%5C%0A8%20%20%26-16%0A%5Cend%7Bbmatrix%7D%5E2%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn-1%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%5C%5C%0A%26%3D...%0A%5Cend%7Balign%7D

%3D%5Cbegin%7Bbmatrix%7D%0A%20-2%20%26-5%20%5C%5C%0A8%20%20%26-16%0A%5Cend%7Bbmatrix%7D%5E%7Bn%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B1%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D


我们要计算a_n,因此要作n-1次变换,即

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D%0A%20-2%20%26-5%20%5C%5C%0A8%20%20%26-16%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B1%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D

处理矩阵次方运算,同样采用对角化,

%5Cbegin%7Bbmatrix%7D%0A%20-2%20%26-5%20%5C%5C%0A8%20%20%26-16%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A%201%20%26%205%5C%5C%0A%202%20%264%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0A%20(-12)%5E%7Bn-1%7D%20%26%200%5C%5C%0A%200%20%26(-6)%5E%7Bn-1%7D%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0A%20-%5Cfrac%7B2%7D%7B3%7D%20%26%20%5Cfrac%7B5%7D%7B6%7D%20%5C%5C%0A%20%5Cfrac%7B1%7D%7B3%7D%20%26-%5Cfrac%7B1%7D%7B6%7D%20%0A%5Cend%7Bbmatrix%7D

代入化简得:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%3D%0A%5Cbegin%7Bbmatrix%7D%0A%20%5Cfrac%7B1%7D%7B6%7D%5Ctimes%20(-12)%5E%7Bn-1%7D%2B%5Cfrac%7B5%7D%7B6%7D%5Ctimes%20(-6)%5E%7Bn-1%7D%20%20%5C%5C%0A%20%5Cfrac%7B1%7D%7B3%7D%5Ctimes%20(-12)%5E%7Bn-1%7D%2B%5Cfrac%7B2%7D%7B3%7D%5Ctimes%20(-6)%5E%7Bn-1%7D%20%0A%5Cend%7Bbmatrix%7D

还原分式,即:

a_n%3D%5Cfrac%7B%20%5Cfrac%7B1%7D%7B6%7D%5Ctimes%20(-12)%5E%7Bn-1%7D%2B%5Cfrac%7B5%7D%7B6%7D%5Ctimes%20(-6)%5E%7Bn-1%7D%20%7D%7B%20%5Cfrac%7B1%7D%7B3%7D%5Ctimes%20(-12)%5E%7Bn-1%7D%2B%5Cfrac%7B2%7D%7B3%7D%5Ctimes%20(-6)%5E%7Bn-1%7D%20%7D%20

稍加化简,即得:

a_n%3D%5Cfrac%7B2%5E%7Bn-1%7D%2B5%7D%7B2%5En%2B4%7D%20

也即上下同除(-6)%5E%7Bn-1%7D%20,以及部分繁分数化简

有了这个背景,我们就可以证明一阶分式递推中一些神秘的周期结论了

如:已知a_%7Bn%2B1%7D%3D-%5Cfrac%7B1%7D%7B1%2Ba_n%7D%20,证明其是周期为3的数列

通过暴力迭代可以证明,而前文我们已经铺垫了利用矩阵将这一迭代进行等价转化的方法,于是我们可从更高的视角来欣赏这一变换

化为标准形式a_%7Bn%2B1%7D%3D%5Cfrac%7B-1%7D%7Ba_n%2B1%7D%20,类比为矩阵:%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0A%20%200%26%20-1%5C%5C%0A1%20%20%261%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D

系数矩阵为:%5Cbegin%7Bbmatrix%7D%0A%20%200%26%20-1%5C%5C%0A1%20%20%261%0A%5Cend%7Bbmatrix%7D

经计算得%5Cbegin%7Bbmatrix%7D%0A%20%200%26%20-1%5C%5C%0A1%20%20%261%0A%5Cend%7Bbmatrix%7D%5E3%3D%0A%0A%5Cbegin%7Bbmatrix%7D%0A%20-%201%26%200%5C%5C%0A0%20%20%26-1%0A%5Cend%7Bbmatrix%7D%0A%3D%0A-%5Cbegin%7Bbmatrix%7D%0A%20%201%26%200%5C%5C%0A0%20%20%261%0A%5Cend%7Bbmatrix%7D,这时化为一个非零系数乘一个单位阵的形式,于是周期T=4


为什么有个非零系数也可以呢?答案是一阶分式系数的齐次性

矩阵4次方运算,即

%5Cbegin%7Balign%7D%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%0A%26%3D%5Cbegin%7Bbmatrix%7D%0A%20%200%26%20-1%5C%5C%0A1%20%20%261%0A%5Cend%7Bbmatrix%7D%5E4%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn-3%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%5C%5C%0A%26%3D%5Cbegin%7Bbmatrix%7D%0A%20%20-1%26%200%5C%5C%0A0%20%20%26-1%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn-3%7D%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%5C%5C%0A%5Cend%7Balign%7D

还原分式,即:a_%7Bn%2B1%7D%3D%5Cfrac%7B-1a_%7Bn-3%7D%7D%7B-1%7D%3Da_%7Bn-3%7D%20

注意这里分子分母的-1可约去,也即系数的齐次性,故单位阵前存在非零系数是允许的


我们再来看看系数矩阵%5Cbegin%7Bbmatrix%7D%0A%20%200%26%20-1%5C%5C%0A1%20%20%261%0A%5Cend%7Bbmatrix%7D的特征根:

%5Clambda%20_%7B1%2C2%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%5Cpm%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7Di%20%3D%5Cmathrm%7Be%7D%20%5E%7B%5Cpm%20%5Cfrac%7B%5Cpi%7D%7B3%7Di%20%7D%20

于是对角化后,有:%5Cbegin%7Bbmatrix%7D%0A%20%200%26%20-1%5C%5C%0A1%20%20%261%0A%5Cend%7Bbmatrix%7D%0A%3DS%5Ccdot%20J%5Ccdot%20S%5E%7B-1%7D

其中J%3D%5Cbegin%7Bbmatrix%7D%0A%5Cmathrm%7Be%7D%20%5E%7B%5Cfrac%7B%5Cpi%7D%7B3%7Di%20%7D%20%20%260%20%5C%5C%0A0%20%20%26%5Cmathrm%7Be%7D%20%5E%7B-%5Cfrac%7B%5Cpi%7D%7B3%7Di%20%7D%0A%5Cend%7Bbmatrix%7D

于是有J%5E3%3D%5Cbegin%7Bbmatrix%7D%0A-1%20%20%260%20%5C%5C%0A%20%200%26-1%0A%5Cend%7Bbmatrix%7D%0A%3D-%5Cbegin%7Bbmatrix%7D%0A%201%20%26%200%5C%5C%0A0%20%20%261%0A%5Cend%7Bbmatrix%7D

因此周期为3。而这,竟也是特殊辐角的旋转周期性造成的!也即从实轴开始以每次%5Cfrac%7B%5Cpi%7D%7B3%7D%20的单位转动,转3次恰好回到实轴

再如:

已知a_%7Bn%2B1%7D%3D1-%5Cfrac%7B1%7D%7Ba_n%7D%20,证明其是周期为3的数列

同理,化为标准形式a_%7Bn%2B1%7D%3D%5Cfrac%7Ba_n-1%7D%7Ba_n%7D%20

系数矩阵:%5Cbegin%7Bbmatrix%7D%0A%201%20%26-1%20%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D

有:%5Cbegin%7Bbmatrix%7D%0A%201%20%26-1%20%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E3%3D%0A-%5Cbegin%7Bbmatrix%7D%0A%201%20%26%200%5C%5C%0A%200%20%261%0A%5Cend%7Bbmatrix%7D

于是周期为3


系数矩阵特征根为:%5Clambda%20_%7B1%2C2%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%5Cpm%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7Di%20%3D%5Cmathrm%7Be%7D%20%5E%7B%5Cpm%20%5Cfrac%7B%5Cpi%7D%7B3%7Di%20%7D%20

因此也是旋转3次后回到实轴,与前例道理相同


同样,对角化的处理也在系数矩阵可对角化时使用,因此也还存在没有解决的情况,也即特征根为重根的情况,也先遗留于此后续再解决。

数学知识,是多么的美妙兼强大!许多云里雾里的“套路”也好,证明超出高中范围的“定理”也罢,我愿通过后续的学习与钻研,把先前的“迷雾”驱散,冲破应试的罩子去探寻数学那一份真实而优雅的美!

哈哈哈哈,我还是依旧的中二,尽量别活成自己讨厌的样子~(





几类特殊递推数列的矩阵算法(下篇)的评论 (共 条)

分享到微博请遵守国家法律