欢迎光临散文网 会员登陆 & 注册

一维非齐次波动方程

2021-10-20 00:46 作者:偏谬Lyx  | 我要投稿

考虑一维的弦振动,

%5Cleft(%20%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20t%5E2%7D%20-%20a%5E2%20%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20x%5E2%7D%20%5Cright)%20u(x%2Ct)%20%3D%20f(x%2Ct)

初始条件为,

%5Cbegin%7Bcases%7D%0Au(x%2C0)%3D%5Cphi(x)%5C%5C%0A%5Cpartial_%7Bt%7Du(x%2C0)%3D%5Cpsi(x)%0A%5Cend%7Bcases%7D

假设边界条件为两端固定,u(0%2Ct)%20%3D%20u(L%2Ct)%20%3D%200。在此类边界条件下,空间基函数为 %5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright),其中 %5Clambda_n%3Dn%5Cpi%2FL。将 u(x%2Ct) 和 f(x%2Ct) 分别在空间上展开成傅里叶级数,

%5Cbegin%7Balign%7D%0A%09u(x%2Ct)%20%3D%20%5Csum_n%20T_n(t)%20%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright)%20%5C%5C%0A%09f(x%2Ct)%20%3D%20%5Csum_n%20f_n(t)%20%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright)%0A%5Cend%7Balign%7D

其中展开系数为,

%5Cbegin%7Balign%7D%0A%09T_n(t)%20%3D%20%5Cfrac%7B2%7D%7BL%7D%20%5Cint_0%5EL%20u(x%2Ct)%20%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright)%20%5C%2C%5Cmathrm%7Bd%7Dx%20%5C%5C%0A%09f_n(t)%20%3D%20%5Cfrac%7B2%7D%7BL%7D%20%5Cint_0%5EL%20f(x%2Ct)%20%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright)%20%5C%2C%5Cmathrm%7Bd%7Dx%0A%5Cend%7Balign%7D

代入初始条件,将展开系数记为,

%5Cbegin%7Balign%7D%0A%20%20%20%20%20%20%20%20A_n%7B%5Cequiv%7DT_n(0)%3D%5Cfrac2L%5Cint_0%5EL%5Cphi(x)%5Csin(%5Clambda_%7Bn%7Dx)%5C%2C%5Cmathrm%7Bd%7Dx%5Cnonumber%5C%5C%0A%25%0A%20%20%20%20%20%20%20%20B_n%7B%5Cequiv%7DT_n'(0)%3D%5Cfrac2L%5Cint_0%5EL%5Cpsi(x)%5Csin(%5Clambda_%7Bn%7Dx)%5C%2C%5Cmathrm%7Bd%7Dx%5Cnonumber%0A%5Cend%7Balign%7D

将级数形式代回原方程可得,

%5Csum_n%20%5Cleft%5B%20T_n''(t)%20%2B%20%5Clambda_n%5E2%20a%5E2%20T_n(t)%20-%20f_n(t)%20%5Cright%5D%20%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright)%20%3D%200

要满足以上方程,需要对任意的 n 都满足,

T_n''(t)%2B%5Clambda_n%5E2%7Ba%5E2%7DT_n(t)%3Df_n(t)

于是原定解问题就转化为了二阶非齐次常微分方程的定解问题,

%5Cbegin%7Bcases%7D%0AT''(t)%20%2B%20%5Clambda%5E2%20a%5E2%20T(t)%20%3D%20f(t)%20%5C%5C%0AT(0)%20%3D%20A%20%5C%5C%0AT'(0)%20%3D%20B%0A%5Cend%7Bcases%7D

利用拉普拉斯变换求解。假设变换后的像函数为,

%5Cbegin%7Balign%7D%0A%09%5Cmathcal%7BL%7D%20%5BT(t)%5D%20%26%3D%20%5Cint_0%5E%7B%5Cinfty%7D%20T(t)%20%5C%2C%5Cmathrm%7Be%7D%5E%7B-st%7D%20%5C%2C%5Cmathrm%7Bd%7Dt%20%3D%20G(s)%20%5C%5C%0A%09%5Cmathcal%7BL%7D%20%5Bf(t)%5D%20%26%3D%20%5Cint_0%5E%7B%5Cinfty%7D%20f(t)%20%5C%2C%5Cmathrm%7Be%7D%5E%7B-st%7D%20%5C%2C%5Cmathrm%7Bd%7Dt%20%3D%20F(s)%0A%5Cend%7Balign%7D

由拉普拉斯变换的基本性质可得,

%5Cbegin%7Balign%7D%0A%09%5Cmathcal%7BL%7D%20%5BT'(t)%5D%20%26%3D%20s%20G(s)%20-%20A%20%5C%5C%0A%09%5Cmathcal%7BL%7D%20%5BT''(t)%5D%20%26%3D%20s%5E2%20G(s)%20-%20sA%20-B%0A%5Cend%7Balign%7D

变换后的方程为,

s%5E2%20G(s)%20-%20sA-B%20%2B%20%5Clambda%5E2%20a%5E2%20G(s)%20%3D%20F(s)

得到相空间中的解,

G(s)%20%3D%20%5Cfrac%7BsA%20%2B%20B%20%2B%20F(s)%7D%7Bs%5E2%20%2B%20%5Clambda%5E2%20a%5E2%7D

对其求逆变换,

%5Cbegin%7Bsplit%7D%0A%09T(t)%20%3D%26%5C%2C%20A%20%5Cmathcal%7BL%7D%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7Bs%7D%7Bs%5E2%20%2B%20%5Clambda%5E2%20a%5E2%7D%20%5Cright%5D%20%2B%20%5Cfrac%7BB%7D%7B%5Clambda%20a%7D%20%5Cmathcal%7BL%7D%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B%5Clambda%20a%7D%7Bs%5E2%20%2B%20%5Clambda%5E2%20a%5E2%7D%20%5Cright%5D%20%5C%5C%0A%26%2B%20%5Cfrac%7B1%7D%7B%5Clambda%20a%7D%20%5Cmathcal%7BL%7D%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B%5Clambda%20a%7D%7Bs%5E2%20%2B%20%5Clambda%5E2%20a%5E2%7D%20F(s)%20%5Cright%5D%20%5C%5C%0A%5Cend%7Bsplit%7D

前两项为常用的三角函数,最后一项为两个函数的卷积,

%5Cbegin%7Bsplit%7D%0A%09T(t)%20%3D%26%5C%2C%20A%20%5Ccos%20%5Cleft(%20%5Clambda%20at%20%5Cright)%20%2B%20%5Cfrac%7BB%7D%7B%5Clambda%20a%7D%20%5Csin%20%5Cleft(%20%5Clambda%20at%20%5Cright)%20%5C%5C%0A%26%2B%20%5Cfrac%7B1%7D%7B%5Clambda%20a%7D%20%5Cint_0%5Et%20%5Csin%20%5Cleft(%20%5Clambda%20a%20%5Ctau%20%5Cright)%20f(t-%5Ctau)%20%5C%2C%5Cmathrm%7Bd%7D%5Ctau%0A%5Cend%7Bsplit%7D

代回到 u(x%2Ct) 的级数形式,可得到最终的通解,

%5Cbegin%7Bsplit%7D%0Au(x%2Ct)%20%3D%20%5Csum_n%20%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright)%20%5Cleft%5B%20A_n%20%5Ccos%20%5Cleft(%20%5Clambda_n%20at%20%5Cright)%20%2B%20%5Cfrac%7BB_n%7D%7B%5Clambda_n%20a%7D%20%5Csin%20%5Cleft(%20%5Clambda_n%20at%20%5Cright)%20%5Cright.%20%5C%5C%0A%5Cleft.%20%2B%20%5Cfrac%7B1%7D%7B%5Clambda_n%20a%7D%20%5Cint_0%5Et%20%5Csin%20%5Cleft(%20%5Clambda_n%20a%20%5Ctau%20%5Cright)%20f_n(t-%5Ctau)%20%5C%2C%5Cmathrm%7Bd%7D%5Ctau%20%5Cright%5D%0A%5Cend%7Bsplit%7D


一维非齐次波动方程的评论 (共 条)

分享到微博请遵守国家法律