【聚类分割】基于 K-means 聚类算法实现图像区域分割附matlab代码
1 简介
对图像进行颜色区域分割.将图像转换到CIE Lab颜色空间,用K均值聚类分析算法对描述颜色的a和b通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对图像进行分割处理.实验结果表明,在CIE Lab空间使用K—means聚类算法可以有效地分割彩色纺织品图像的颜色区域.



2 完整代码
clear all; close all; clc;
A = double(imread('bird_small.tiff'));% 载入图片
dim = size(A,1); % 图片行数
k = 16; % 颜色分类的层数
means = zeros(k, 3); % Initialize means to randomly-selected colors in the original photo.
rand_x = ceil(dim*rand(k, 1));%初始means是k行k列随机数作为聚类中心
rand_y = ceil(dim*rand(k, 1));
for i = 1:k
means(i,:) = A(rand_x(i), rand_y(i), :);%在图像中找到初始聚类中心
end
for itr=1:100
s_x=zeros(k,3);
s_ind=zeros(k,1);
for i=1:dim
for j=1:dim
r=A(i,j,1);g=A(i,j,2);b=A(i,j,3);
[val ind]=min(sum((repmat([r,g,b],k,1)-means).^2,2));
%repmat(A,k,1)对A矩阵进行k行的复制
s_x(ind,:)=s_x(ind,:)+[r,g,b];
s_ind(ind)=s_ind(ind)+1;
end
end
for ii=1:k
if s_ind(ii)>0
s_x(ii,:)=s_x(ii,:)./s_ind(ii);
end
end
d=sum(sqrt(sum((s_x-means).^2,2)));%计算距离
if d<1e-5
break
end
means=s_x;
end
means = round(means);
itr
figure; hold on
for i=1:k
col = (1/255).*means(i,:);
rectangle('Position', [i, 0, 1, 1], 'FaceColor', col, 'EdgeColor', col);
end
axis off
large_image = double(imread('bird_large.tiff'));
figure;subplot(121);imshow(A,[]);title('原图')
large_dim = size(large_image, 1);
for i = 1:large_dim
for j = 1:large_dim
r = large_image(i,j,1); g = large_image(i,j,2); b = large_image(i,j,3);
[val ind]=min(sum((repmat([r,g,b],k,1)-means).^2,2));
large_image(i,j,:) = means(ind,:);
end
end
subplot(122);imshow(uint8(round(large_image)));title('Kmean分割图')
imwrite(uint8(round(large_image)), 'bird_kmeans.jpg');% Save image
3 仿真结果
4 参考文献
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
