欢迎光临散文网 会员登陆 & 注册

高斯整数环的一道典型习题

2023-08-20 01:20 作者:自函子  | 我要投稿

设 z 是高斯整数, 且 %5Cgcd(%5CRe%20z%2C%5CIm%20z)%3D1 , 证明 %5Cmathbb%7BZ%7D%5Bi%5D%2F%5Clangle%20z%5Crangle%20 恰好有 %5Cleft%7Cz%5Cright%7C%5E2 个元素.

证明: 不妨设其实部, 虚部为 a%2Cb . 此时由 %5Crm%7BBezout%7D 定理, %5Cexists%20%5C%2C%20s%2Ct%20%5C%2C%5Cin%5C%2C%5Cmathbb%7BZ%7D , 满足 as%2Bbt%3D1 .

则有        z(t%2Bsi)%3Dat-bs%2B%5Coverbrace%7Bas%2Bbt%7D%5E%7B1%7Di%3Dat-bs%2Bi%20%20%5Cequiv%200%20%5Cpmod%7Bz%7D%20%5Cimplies%20i%20%5Cequiv%20bs-at%20%5Cpmod%7Bz%7D%20%5C%5C

命环同态为  %5Cvarphi%3A%20%5Cmathbb%7BZ%7D%5Cto%5Cmathbb%7BZ%7D%5Bi%5D%2F%5Clangle%20z%5Crangle .  考虑 %5Cforall%20%5C%2Cx%2Byi%5Cin%20%5Cmathbb%7BZ%7D%5Bi%5D%2C%5C%2C%5C%2Cx%2Byi%20%5Cequiv%20x%2By(bs-at)%20%5Cin%20%5Cmathbb%7BZ%7D%5Cpmod%7Bz%7D. 即是说像中任意元素必与一整数对应, 故 %5Cvarphi 满. 

%20%5Cforall%20%5C%2C%20u%20%5Cin%5Cker%5Cvarphi%2C%5C%2C%20a%2Bbi%5Cmid%20u%20%5Cimplies%20%5Cdfrac%7Bu%7D%7Ba%2Bbi%7D%20%5Cin%20%5Cmathbb%7BZ%7D%5Bi%5D%5C%5C%0A%20%5Cimplies%20%20%20%5Cdfrac%7Bu(a-bi)%7D%7B%5Cleft%7Cz%5Cright%7C%5E2%7D%5Cin%20%5Cmathbb%7BZ%7D%5Bi%5D%20%5Cimplies%5Cleft%7Cz%5Cright%7C%5E2%20%5Cmid%20%5Cgcd(ua%2C%20ub)%20%5Cimplies%20%5Cleft%7Cz%5Cright%7C%5E2%5Cmid%20u%5Cgcd(a%2Cb)%3Du

这即是说 %5Cker%5Cvarphi%20%3D%5Cleft%7Cz%5Cright%7C%5E2%5Cmathbb%7BZ%7D  . 从而依同态基本定理有

%5Ctext%7BIm%7D%5Cvarphi%5Ccong%20%5Cmathbb%7BZ%7D%2F%5Cker%5Cvarphi%3D%20%5Cmathbb%7BZ%7D%2F%5Cleft%7Cz%5Cright%7C%5E2%5Cmathbb%7BZ%7D%20%5C%5C 

高斯整数环的一道典型习题的评论 (共 条)

分享到微博请遵守国家法律