欢迎光临散文网 会员登陆 & 注册

【Calculus】Volume of the Bicylinder

2021-07-17 09:50 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (郑涛)

【Problem】

The bicylinder is a solid formed by intersecting two perpendicular cylinders of equal cross-sections. The cross-sections of the intersecting cylinders are circles of radius r. Use integration to determine the volume of the bicylinder.

【Solution】

The first thing to consider are the level-curves in the direction of integration. Let the integration be carried out in the x-axis. The cross-sections in the x-axis are squares that vary under the constraint of a circle with radius r%20, which is the circle x%5E2%20%2B%20y%5E2%20%3D%20r%5E2. The side length the cross-sectional squares is given by the formula

2y%20%3D%202%5Csqrt%7Br%5E2-x%5E2%7D

Thus, the cross-sectional areas is the function

A(x)%20%3D%204(r%5E2%20-%20x%5E2)


To determine the volume, integrate in the x-axis from one end of the circle to the other end.

V%20%3D%20%5Cint%5E%7Br%7D_%7B-r%7D%204(r%5E2%20-%20x%5E2)dx

V%20%3D%204(r%5E2x%20-%5Cfrac%7Bx%5E3%7D%7B3%7D)%5Cvert_%7B-r%7D%5E%7Br%7D%20


%20V%20%3D%20%5Cfrac%7B16r%5E3%7D%7B3%7D%20


【Calculus】Volume of the Bicylinder的评论 (共 条)

分享到微博请遵守国家法律