欢迎光临散文网 会员登陆 & 注册

一些基本不等式的证明

2023-06-03 09:18 作者:~Sakuno酱  | 我要投稿

首先证明不等式

(%5Cfrac%7Bx%2By%7D%7B2%7D)%5E2%20%5Cge%20xy      

(%5Cfrac%7Bx%2By%7D%7B2%7D)%5E2%20-%20xy%20%3D%20%5Cfrac%7Bx%5E2%2By%5E2%7D%7B2%7D%20%5Cge%200%20  当 x%3Dy%3D0 时等号成立

这个在证明柯西不等式时候会用到


柯西不等式

命题

(%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_iy_i)%5E2%5Cle(%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%5E2)(%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dy_i%5E2) 

数学归纳法证明:

n%3D1 时显然成立

假设 n%3Dn 时成立,考虑 n%2B1

为了直观我们记

%5Calpha%20%3D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%5E2

%5Cbeta%20%3D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%5E2

%5Cgamma%20%3D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_iy_i

直接右减去左

(%5Csum_%7Bi%3D1%7D%5E%7Bn%2B1%7Dx_i%5E2)(%5Csum_%7Bi%3D1%7D%5E%7Bn%2B1%7Dy_i%5E2)%20-%20(%5Csum_%7Bi%3D1%7D%5E%7Bn%2B1%7Dx_iy_i)%5E2%20

代换

%3D%20(%5Calpha%2Bx_%7Bn%2B1%7D%5E2)(%5Cbeta%20%2B%20y_%7Bn%2B1%7D%5E2)-(%5Cgamma%20%2Bx_%7Bn%2B1%7Dy_%7Bn%2B1%7D)%5E2%20

%3D%20(%5Calpha%5Cbeta%20-%20%5Cgamma%5E2)%20%20%20%2B%20%5Calpha%20y%5E2_%7Bn%2B1%7D%2B%5Cbeta%20x%5E2_%7Bn%2B1%7D-2%5Cgamma%20x_%7Bn%2B1%7Dy_%7Bn%2B1%7D%20%20

其中 (%5Calpha%5Cbeta%20-%20%5Cgamma%5E2)%20%20%5Cge%200 

%5Calpha%20y%5E2_%7Bn%2B1%7D%2B%5Cbeta%20x%5E2_%7Bn%2B1%7D-2%5Cgamma%20x_%7Bn%2B1%7Dy_%7Bn%2B1%7D%20%20 使用均值不等式

%5Cge%202%5Csqrt%7B%5Calpha%5Cbeta%20x%5E2_%7Bn%2B1%7D%20y%5E2_%7Bn%2B1%7D%7D-2%5Cgamma%20x_%7Bn%2B1%7Dy_%7Bn%2B1%7D%20%20  使用 %5Calpha%20%5Cbeta%20%5Cge%20%5Cgamma%5E2 得到 %5Csqrt%7B%5Calpha%20%5Cbeta%7D%20%5Cge%20%7C%5Cgamma%7C

%5Cge2%20(%7C%5Cgamma%20x_%7Bn%2B1%7Dy_%7Bn%2B1%7D%7C-%5Cgamma%20x_%7Bn%2B1%7Dy_%7Bn%2B1%7D) 

%5Cge%200 


平方平均大于等于算数平均

代入柯西不等式

(%5Csum_%7Bi%3D1%7D%5Enx_i%5Ccdot%201)%5E2%20%5Cle%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%5E2%5Csum_%7Bi%3D1%7D%5En1%5E2%20%5Cle%20n%5Csum_%7Bi%3D1%7D%5Enx_i%5E2

%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%20%5Cle%5Csqrt%7Bn%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%5E2%7D

同时除以 n

%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5Enx_i%7D%7Bn%7D%20%5Cle%20%5Csqrt%7B%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%5E2%7D%7Bn%7D%7D


算数平均大于几何平均

 %5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%7D%7Bn%7D%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D   

首先归纳法证明 n%3D2%5Ek 时成立

k%3D1 时易证

考虑 k%2B1

%5Calpha%20%3D%20%5Csum_%7Bi%3D1%7D%5E%7B2%5Ek%7Dx_i

%5Cbeta%20%3D%20%5Csum_%7Bi%3D2%5Ek%2B1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i

%5Csum_%7Bi%3D1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i%3D%5Calpha%2B%5Cbeta%20%5Cge%202%5Csqrt%7B%5Calpha%20%5Cbeta%7D

其中

%5Calpha%20%3D%20%5Csum_%7Bi%3D1%7D%5E%7B2%5Ek%7Dx_i%20%5Cge%202%5Ek%20(%5Cprod_%7Bi%3D1%7D%5E%7B2%5Ek%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7B2%5Ek%7D%7D

%5Cbeta%20%3D%20%5Csum_%7Bi%3D2%5Ek%2B1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i%20%5Cge%202%5Ek%20%0A%20(%5Cprod_%7Bi%3D2%5Ek%2B1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7B2%5Ek%7D%7D

所以

%5Calpha%20%5Cbeta%20%5Cge%202%5E%7B2k%7D%20(%5Cprod_%7Bi%3D1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7B2%5Ek%7D%7D

2%5Csqrt%7B%5Calpha%20%5Cbeta%7D%20%5Cge%202%5E%7Bk%2B1%7D%20%20(%5Cprod_%7Bi%3D1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7B2%5E%7Bk%2B1%7D%7D%7D


尝试证明更一般的 n%3Dk, n%20%5Cne%202%5Em时成立

p%3D2%5Ek  %5Coverline%7Bx%7D%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bk%7D%7Bx_i%7D%7D%7Bk%7D  

令 y_i%3D%20%5Cbegin%7Bcases%7D%0Ax_i%2C%5Cquad%20%26x%5Cleq%20k%20%5C%5C%0A%5Coverline%7Bx%7D%2C%5Cquad%20%26%20k%20%3C%20x%20%5Cle%20p%0A%5Cend%7Bcases%7D%20

%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bp%7Dy_i%7D%7Bp%7D%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bk%7Dx_i%20%2B%20%5Csum_%7Bi%3Dk%2B1%7D%5E%7Bp%7D%5Coverline%7Bx%7D%20%7D%7Bp%7D%20%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bp%7Dy_i)%5E%5Cfrac%7B1%7D%7Bp%7D

%5Cfrac%7Bk%5Coverline%7Bx%7D%20%2B%20(p-k)%5Coverline%7Bx%7D%20%7D%7Bp%7D%20%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bp%7Dy_i)%5E%5Cfrac%7B1%7D%7Bp%7D%20%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bk%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7Bp%7D%7D((%5Coverline%7Bx%7D)%5E%7Bp-k%7D)%5E%7B%5Cfrac%7B1%7D%7Bp%7D%7D

%5Coverline%7Bx%7D%20%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bk%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7Bp%7D%7D((%5Coverline%7Bx%7D)%5E%7Bp-k%7D)%5E%7B%5Cfrac%7B1%7D%7Bp%7D%7D  两边同时作 p 次幂

(%5Coverline%7Bx%7D)%5Ep%20%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bk%7Dx_i)%5E%7B%7D((%5Coverline%7Bx%7D)%5E%7Bp-k%7D) 两边同时乘以 (%5Coverline%7Bx%7D)%5E%7Bk-p%7D

(%5Coverline%7Bx%7D)%5Ek%20%5Cge%20%5Cprod_%7Bi%3D1%7D%5E%7Bk%7Dx_i 两边同时作 %5Cfrac%7B1%7D%7Bk%7D 次幂

%5Coverline%7Bx%7D%20%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bk%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7Bk%7D%7D 得证


几何平均大于等于调和平均


把上面不等式里面的 x_i 换成 %5Cfrac%7B1%7D%7Bx_i%7D 得到

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bx_i%7D%20%5Cge%20n(%5Cprod_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bx_i%7D)%5E%5Cfrac%7B1%7D%7Bn%7D%20%5Cge%20n%20%5Cfrac%7B1%7D%7B(%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%7D

两边同时取倒数 得到

(%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%20%5Cge%20%5Cfrac%7Bn%7D%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bx_i%7D%7D


三角不等式

%7C%5C%7C%5Cmathrm%7Bx%7D%5C%7C-%5C%7C%5Cmathrm%7By%7D%5C%7C%7C%20%5Cle%20%5C%7C%5Cmathrm%7B%5Cmathrm%7Bx%7D-%5Cmathrm%7By%7D%7D%5C%7C%20%5Cle%20%5C%7C%5Cmathrm%7B%5Cmathrm%7Bx%7D%7D%5C%7C%20%20%2B%20%20%5C%7C%5Cmathrm%7B%5Cmathrm%7By%7D%7D%5C%7C%20%0A

先证明左边的部分

记 L%3D%7C%5C%7C%5Cmathrm%7Bx%7D%5C%7C-%5C%7C%5Cmathrm%7By%7D%5C%7C%7C%20 

R%3D%5C%7C%5Cmathrm%7B%5Cmathrm%7Bx%7D-%5Cmathrm%7By%7D%7D%5C%7C

L%5E2%3D%5Csum_%7Bi%7Dx_i%5E2%20%2B%20%5Csum_%7Bi%7Dy_i%5E2-2%5Csqrt%7B(%5Csum_%7Bi%7Dx_i%5E2)%20(%5Csum_%7Bi%7Dy_i%5E2)%7D

R%5E2%3D%5Csum_%7Bi%7Dx_i%5E2%20%2B%20%5Csum_%7Bi%7Dy_i%5E2-2%5Csum_%7Bi%7Dx_iy_i

%5Cfrac%7BR%5E2-L%5E2%7D%7B2%7D%3D%5Csqrt%7B(%5Csum_%7Bi%7Dx_i%5E2)%20(%5Csum_%7Bi%7Dy_i%5E2)%7D%20-%5Csum_%7Bi%7Dx_iy_i

应用柯西不等式得到

%5Csqrt%7B(%5Csum_%7Bi%7Dx_i%5E2)%20(%5Csum_%7Bi%7Dy_i%5E2)%7D%20-%5Csum_%7Bi%7Dx_iy_i%20%5Cge%20%7C%5Csum_%7Bi%7Dx_iy_i%7C%20-%5Csum_%7Bi%7Dx_iy_i

所以 R%5E2%3EL%5E2

R%3EL


再证明右边部分

记 R%3D%5C%7C%5Cmathrm%7Bx%7D%5C%7C%2B%5C%7C%5Cmathrm%7By%7D%5C%7C 

L%3D%5C%7C%5Cmathrm%7B%5Cmathrm%7Bx%7D-%5Cmathrm%7By%7D%7D%5C%7C

同理有

R%5E2-L%5E2%3D2%5Csqrt%7B(%5Csum_%7Bi%7Dx_i%5E2)%20(%5Csum_%7Bi%7Dy_i%5E2)%7D-2%5Csum_%7Bi%7Dx_iy_i

%5Cge2(%20%7C%5Csum_%7Bi%7Dx_iy_i%7C%20-%5Csum_%7Bi%7Dx_iy_i)%20%5Cge%200


三角不等式的一个重要变形 

在多元函数微分学里面经常用到

%20%5C%7C%5Cmathrm%7B%5Cmathrm%7Bx%7D%7D%5C%7C%3D%5C%7C%20%5Csum_%7Bi%7Dx_ie_i%20%5C%7C%20%5Cle%20%20%5Csum_i%20%5C%7C%20x_ie_i%5C%7C%20%5Cle%20%5Csum_%7Bi%7D%20%7Cx_i%7C

一些基本不等式的证明的评论 (共 条)

分享到微博请遵守国家法律