欢迎光临散文网 会员登陆 & 注册

这也许是计算量最小的做法了(2022乙卷圆锥曲线)

2022-06-15 14:02 作者:数学老顽童  | 我要投稿

(2022全国乙,20)已知椭圆 E的中心为坐标原点,对称轴为x轴、y轴,且过点A%5Cleft(%200%2C-2%20%5Cright)%20B%5Cleft(%20%5Cfrac%7B3%7D%7B2%7D%2C-1%20%5Cright)%20两点.

(1)求E的方程;

(2)设过点P%5Cleft(%201%2C-2%20%5Cright)%20的直线交EMN两点,过M且平行于x轴的直线与线段AB交于点T,点H满足%5Coverrightarrow%7BMT%7D%3D%5Coverrightarrow%7BTH%7D.证明:直线HN过定点.


解:(1)设椭圆的方程为mx%5E2%2Bny%5E2%3D1

由题意得%5Cbegin%7Bcases%7D%094n%3D1%5C%5C%09%5Cfrac%7B9%7D%7B4%7Dm%2Bn%3D1%5C%5C%5Cend%7Bcases%7D,解得%5Cbegin%7Bcases%7D%09m%3D%5Cfrac%7B1%7D%7B3%7D%2C%5C%5C%09n%3D%5Cfrac%7B1%7D%7B4%7D.%5C%5C%5Cend%7Bcases%7D

E的方程为%5Cfrac%7Bx%5E2%7D%7B3%7D%2B%5Cfrac%7By%5E2%7D%7B4%7D%3D1.

(2)先猜后证,直线HN过定点A.

如图,连接AP,易知AP平行于HM这个很关键!

设直线PN与线段AB交于点Q.

%5Cleft%5C%7B%20%5Coverrightarrow%7BPA%7D%2C%5Coverrightarrow%7BPN%7D%20%5Cright%5C%7D%20为基底,则

%5Coverrightarrow%7BNA%7D%3D%5Coverrightarrow%7BPA%7D-%5Coverrightarrow%7BPN%7D

%5Cbegin%7Baligned%7D%09%5Coverrightarrow%7BNH%7D%26%3D%5Coverrightarrow%7BMH%7D-%5Coverrightarrow%7BMN%7D%5C%5C%09%26%3D2%5Coverrightarrow%7BMT%7D-%5Cfrac%7BMN%7D%7BPN%7D%5Ccdot%20%5Coverrightarrow%7BPN%7D%5C%5C%09%26%3D%5Cfrac%7B2MT%7D%7BPA%7D%5Ccdot%20%5Coverrightarrow%7BPA%7D-%5Cfrac%7BMN%7D%7BPN%7D%5Ccdot%20%5Coverrightarrow%7BPN%7D%5C%5C%09%26%3D%5Cfrac%7B2MQ%7D%7BPQ%7D%5Ccdot%20%5Coverrightarrow%7BPA%7D-%5Cfrac%7BMN%7D%7BPN%7D%5Ccdot%20%5Coverrightarrow%7BPN%7D%5C%5C%5Cend%7Baligned%7D

欲证NHA三点共线,

只需证%5Coverrightarrow%7BNA%7D%5Coverrightarrow%7BNH%7D共线,

只需证%5Cfrac%7B2MQ%7D%7BPQ%7D%3D%5Cfrac%7BMN%7D%7BPN%7D

%5Cfrac%7B2PQ-2PM%7D%7BPQ%7D%3D%5Cfrac%7BPN-PM%7D%7BPN%7D

%5Cfrac%7B1%7D%7BPM%7D%2B%5Cfrac%7B1%7D%7BPN%7D%3D%5Cfrac%7B2%7D%7BPQ%7D.

设直线PN的参数方程为

%5Cbegin%7Bcases%7D%09x%3D1%2Bt%5Ccos%20%20%5Ctheta%20%2C%5C%5C%09y%3D-2%2Bt%5Csin%20%20%5Ctheta%5C%5C%5Cend%7Bcases%7Dt为参数)

设点MN%0AQ对应的参数分别为t_1t_2t_0,则%5Cfrac%7B1%7D%7BPM%7D%2B%5Cfrac%7B1%7D%7BPN%7D%3D%5Cfrac%7B2%7D%7BPQ%7D%5CLeftrightarrow%20%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%3D%5Cfrac%7B2%7D%7Bt_0%7D.

联立直线PN与椭圆E,得

%5Cleft(%20%5Ccos%20%5E2%5Ctheta%20%2B3%20%5Cright)%20t%5E2%2B%5Cleft(%208%5Ccos%20%20%5Ctheta%20-12%5Csin%20%20%5Ctheta%20%5Cright)%20t%2B4%3D0

t_1%2Bt_2%3D%5Cfrac%7B12%5Csin%20%20%5Ctheta%20-8%5Ccos%20%20%5Ctheta%7D%7B%5Ccos%20%5E2%5Ctheta%20%2B3%7D

t_1t_2%3D%5Cfrac%7B4%7D%7B%5Ccos%20%5E2%5Ctheta%20%2B3%7D

%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%3D%5Cfrac%7Bt_1%2Bt_2%7D%7Bt_1t_2%7D%3D3%5Csin%20%20%5Ctheta%20-2%5Ccos%20%20%5Ctheta%20.

易知直线AB的方程为2x-3y-6%3D0

与直线PN联立,得

%5Cleft(%202%5Ccos%20%20%5Ctheta%20-3%5Csin%20%20%5Ctheta%20%5Cright)%20t%2B2%3D0

%5Cfrac%7B2%7D%7Bt_0%7D%3D3%5Csin%20%20%5Ctheta%20-2%5Ccos%20%20%5Ctheta

所以%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%3D%5Cfrac%7B2%7D%7Bt_0%7D,证毕.

这也许是计算量最小的做法了(2022乙卷圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律