欢迎光临散文网 会员登陆 & 注册

形式Dirichlet级数

2022-01-18 20:48 作者:子瞻Louis  | 我要投稿

已收录至:《杂文集》

积性数论中有一个十分重要的工具——Dirichlet级数(也叫Dirichlet生成函数),它通常是为以下形式:

%5Cmathcal%20D(s%2Cf)%3A%3DF(s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bf(n)%7D%7Bn%5Es%7D

本期并不会过深入的研究,而是只指出它的有关数论函数的一些代数性质

f(n)%3D1(n)%5Cequiv1,就可以得到著名的zeta函数:

%5Cmathcal%20D(s%2C1)%3D%5Czeta(s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bn%5Es%7D

Euler乘积公式

先从一个著名的乘积开始:(%5CRe(s)%3E1

%5Czeta(s)%3D%5Cprod_p%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)%5E%7B-1%7D

该公式可以以下广义的结论

f(n)是积性函数且%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20f(n)绝对收敛,则

  • %5Csum_%7Bn%3D1%7D%5E%5Cinfty%20f(n)%3D%5Cprod_p(1%2Bf(p)%2Bf(p%5E2)%2B%E2%80%A6)

◀因为f(n)是积性函数,所以f(1)%3D1,根据算术基本定理可将每个n唯一分解为若干素数的乘积,当n遍历所有整数时,分解出的乘积素数将遍历所有素数,这里就简单验证下:

%5Cprod_%7Bp%5Cle%20N%7D(1%2Bf(p)%2Bf(p%5E2)%2B%E2%80%A6)%3D%5Csum_%7Bn%3D1%7D%5EN%20f(n)%2BR(N)

其中%7CR(N)%7C%5Cle%5Cleft%7C%5Csum_%7Bn%3EN%7Df(n)%5Cright%7C%5Cle%5Csum_%7Bn%3EN%7D%7Cf(n)%7C

因为%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20f(n)绝对收敛,所以当N%5Crightarrow%5CinftyR(N)%5Crightarrow0

因此该公式成立▶

特别地,若f(n)是完全积性函数,则

  • %5Csum_%7Bn%3D1%7D%5E%5Cinfty%20f(n)%3D%5Cprod_p(1-f(p))%5E%7B-1%7D

显然可以由几何级数直接推出

因此在上诉公式中取f(n)%3D%5Cfrac1%7Bn%5Es%7D可得

%5Czeta(s)%3D%5Cprod_p%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)%5E%7B-1%7D

在上式中令s%5Crightarrow1,因为右侧是发散的,所以右侧也是发散的,即右侧必须有无穷项,由此便可得著名的Euclid定理——素数有无穷多个

几个有用的性质:

%5Cmathbb%20A是所有数论函数的集合,显然有

  • %5Cmathcal%20D(s%2Cf%2Bg)%3D%5Cmathcal%20D(s%2Cf)%2B%5Cmathcal%20D(s%2Cg)%2Cf%2Cg%5Cin%5Cmathbb%20A

  • %5Cmathcal%20D(s%2Ckf)%3Dk%5Cmathcal%20D(s%2Cf)%2Ck%5Cin%20%5Cmathbb%20C%2Cf%5Cin%5Cmathbb%20A

*表示Dirichlet卷积,有

%5Cbegin%7Baligned%7D%5Cmathcal%20D(s%2Cf)%5Cmathcal%20D(s%2Cg)%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bf(n)%7D%7Bn%5Es%7D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bg(n)%7D%7Bn%5Es%7D%5C%5C%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Csum_%7Bm%3D1%7D%5E%5Cinfty%5Cfrac%7Bf(n)g(m)%7D%7B(mn)%5Es%7D%5Cend%7Baligned%7D

作代换k%3Dmn,可得

%5Cbegin%7Baligned%7D%5Cmathcal%20D(s%2Cf)%5Cmathcal%20D(s%2Cg)%26%3D%5Csum_%7Bk%3D1%7D%5E%5Cinfty%5Cfrac%7B1%7D%7Bk%5Es%7D%5Csum_%7Bk%3Dmn%7Df(n)g(m)%5C%5C%26%3D%5Csum_%7Bk%3D1%7D%5E%5Cinfty%5Cfrac%7Bf*g(k)%7D%7Bk%5Es%7D%5Cend%7Baligned%7D

  • %5CRightarrow%20%5Cmathcal%20D(s%2Cf)%5Cmathcal%20D(s%2Cg)%3D%5Cmathcal%20D(s%2Cf*g)

%5Ctilde%7Bf%7D%20(n)表示f(n)的Mobius变换,则有

%5Cmathcal%20D(s%2C%5Ctilde%7Bf%7D)%3D%5Czeta(s)%5Cmathcal%20D(s%2Cf)

一个应用

取mobius函数%5Cmu(n),根据广义Euler乘积公式

%5Cmathcal%20D(s%2C%5Cmu)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Cmu(n)%7D%7Bn%5Es%7D%3D%5Cprod_p%5Cleft(1%2B%5Cfrac%7B%5Cmu(p)%7D%7Bp%5Es%7D%2B%5Cfrac%7B%5Cmu(p%5E2)%7D%7Bp%5E%7B2s%7D%7D%2B%E2%80%A6%5Cright)%3D%5Cprod_p%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)

因此,可以得到

%5Cmathcal%20D(s%2C%5Cmu)%3D%5Cfrac1%7B%5Czeta(s)%7D

再根据Dirichlet级数乘积性质,就再次推出了Mobius反演公式,又有

1%3D%5Cmathcal%20D(s%2C%5Cvarepsilon)

其中%5Cvarepsilon(n)是单位示性函数,因此也可得1与Mobius函数的Dirichlet关系

再从zeta函数出发,对它取一阶导数,可得

%5Czeta'(s)%3D-%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Clog%20n%7D%7Bn%5Es%7D%3D-%5Cmathcal%20D(s%2C%5Clog)

进一步,若取k阶导数,有

%5Cfrac%7B%5Cmathrm%20d%5Ek%7D%7B%5Cmathrm%20ds%5Ek%7D%5Czeta(s)%3D(-1)%5Ek%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Clog%5Ek%20n%7D%7Bn%5Es%7D%3D(-1)%5Ek%5Cmathcal%20D(s%2C%5Clog%5Ek)

对zeta函数的Euler乘积取对数

%5Cbegin%7Baligned%7D%5Cln%5Czeta(s)%26%3D-%5Csum_p%5Cln%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)%5C%5C%26%3D%5Csum_p%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bnp%5E%7Bsn%7D%7D%5Cend%7Baligned%7D

再取导数,得到

%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D-%5Csum_p%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Clog%20n%7D%7Bp%5E%7Bsn%7D%7D

这里以%5Cfrac%20%7Bf'%7Df(s)表示%5Cfrac%7Bf'(s)%7D%7Bf(s)%7D

注意到此和式实际上就是遍历所有素数的乘方,因此可以利用Von mangoldt函数将它改写为

%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D-%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5CLambda(n)%7D%7Bn%5Es%7D%3D-%5Cmathcal%20D(s%2C%5CLambda)

由此及乘积性质可以建立Von mangoldt函数与自然对数间的Mobius变换关系

  • %5Csum_%7Bd%7Cn%7D%5CLambda(d)%3D%5Clog%20n

Selberg等式

关于该等式,利用Dirichlet级数可以给出一个十分简洁的证明,有

%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D-%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5CLambda(n)%7D%7Bn%5Es%7D%3D-%5Cmathcal%20D(s%2C%5CLambda)

对它取个导数吧

%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20ds%7D%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5CLambda(n)%5Clog%20n%7D%7Bn%5Es%7D%3D%5Cmathcal%20D(s%2C%5CLambda%5Ccdot%5Clog)

而又有

%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20ds%7D%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D%5Cfrac%7B%5Czeta''%7D%7B%5Czeta%7D(s)-%5Cleft(%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%5Cright)%5E2

%5CRightarrow%20%5Cmathcal%20D(s%2C%5CLambda%5Ccdot%5Clog)%3D%5Cmathcal%20D(s%2C%5Clog%5E2)%5Cmathcal%20D(s%2C%5Cmu)-%5Cmathcal%20D%5E2(s%2C%5CLambda)

%5CRightarrow%5Cmathcal%20D(s%2C%5CLambda%5Ccdot%5Clog)%3D%5Cmathcal%20D(s%2C%5Clog%5E2%5Ccirc%5Cmu-%5CLambda%5Ccirc%5CLambda)

  • %5CLambda(n)%5Clog%20n%3D%5Csum_%7Bd%7Cn%7D%5Cmu%5Cleft(%5Cfrac%20nd%5Cright)%5Clog%5E2d-%5Csum_%7Bd%7Cn%7D%5CLambda(d)%5CLambda%5Cleft(%5Cfrac%20nd%5Cright)

杂烩

不妨试试把一些数论函数揉进Dirichlet级数里:

(以下%5Comega(n)表示n的不同素因子个数,%5COmega(n)表示所有素因子个数,%5Comega(1)%3D%5COmega(1)%3D0

  1. 由于d(n)%3D%5Csum_%7Bd%7Cn%7D1%3D1*1(n),因此

    %5Cmathcal%20D(s%2Cd)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bd(n)%7D%7Bn%5Es%7D%3D%5Czeta%5E2(s)

  2. 更进一步,根据Dirichlet卷积的另一种定义,有

    %5Cunderbrace%7B1*1*%E2%80%A6*1%7D_%7Bk%E4%B8%AA%7D%3D%5Csum_%7Bn%3Da_1a_2%E2%80%A6a_k%7D1

    右式可以看做将n分解为k个数相乘的方法种数,

    %5Ctau_k(n)%3D%5Csum_%7Bn%3Da_1a_2%E2%80%A6a_k%7D1

    %5Cbegin%7Baligned%7D%5CRightarrow%20%5Cmathcal%20D(s%2C%5Ctau_k)%26%3D%5Cmathcal%20D(s%2C%5Cunderbrace%7B1*1*%E2%80%A6*1%7D_%7Bk%E4%B8%AA%7D)%5C%5C%26%3D%5Cmathcal%20D%5Ek(s%2C1)%3D%5Czeta%5Ek(s)%5Cend%7Baligned%7D

  3. 还用另一种方式推广:设

    %5Csigma_k(n)%3D%5Csum_%7Bd%7Cn%7Dd%5Ek%3D1*%5Cmathrm%20%7Bid%7D%5Ek(n)

    %5CRightarrow%20%5Cmathcal%20D(s%2C%5Csigma_k)%3D%5Czeta(s)%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bn%5Ek%7D%7Bn%5Es%7D%3D%5Czeta(s)%5Czeta(s-k)

  4. 根据Mobius函数的性质,Euler函数

    %5Cvarphi(n)%3Dn%5Cprod_%7Bp%7Cn%7D%5Cleft(1-%5Cfrac1p%5Cright)%3D%5Csum_%7Bd%7Cn%7D%5Cmu(d)%5Ccdot%5Cfrac%20nd%3D%5Cmu*%5Cmathrm%20%7Bid%7D(n)

    因此,其Dirichlet生成函数为:

    %5Cmathcal%20D(s%2C%5Cvarphi)%3D%5Cfrac1%7B%5Czeta(s)%7D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bn%7D%7Bn%5Es%7D%3D%5Cfrac%7B%5Czeta(s-1)%7D%7B%5Czeta(s)%7D

    再由zeta函数在偶数处的值,我们得到一个形式上的zeta函数在奇数处的公式:

    %5Czeta(2n-1)%3D(-1)%5E%7Bn%2B1%7D%5Cfrac%7BB_%7B2n%7D(2%5Cpi)%5E%7B2n%7D%7D%7B2(2n)!%7D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Cvarphi(n)%7D%7Bn%5Es%7D

    这个公式并不能用来计算在奇数处的值,也就是说它其实没啥鸟用(

  5. 因Mobius函数仅在n无平方因子时不为零且绝对值都是1,因此取它的绝对值或平方即可表示对无平方因子整数的示性函数

    %5Cmu%5E2(n)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%20%2C%26%20%5Cnexists%20p%2Cp%5E2%7Cn%20%5C%5C%200%2C%20%20%26%20%5Ctext%7Botherwise%7D%0A%5Cend%7Barray%7D%5Cright.

    Mobius函数是积性的,因此其平方也是积性,将它揉进Dirichlet级数里并利用Euler乘积:

    %5Cbegin%7Baligned%7D%5Cmathcal%20D(s%2C%5Cmu%5E2)%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Cmu%5E2(n)%7D%7Bn%5Es%7D%5C%5C%26%3D%5Cprod_p%5Cleft(1%2B%5Cfrac%7B%5Cmu%5E2(p)%7D%7Bp%5Es%7D%2B%5Cfrac%7B%5Cmu%5E2(p%5E2)%7D%7Bp%5E%7B2s%7D%7D%E2%80%A6%5Cright)%5C%5C%26%3D%5Cprod_p%5Cleft(1%2B%5Cfrac1%7Bp%5Es%7D%5Cright)%5C%5C%26%3D%5Cprod_p%5Cfrac%7B%5Cleft(1%2B%5Cfrac1%7Bp%5Es%7D%5Cright)%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)%7D%7B%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)%7D%5C%5C%26%3D%5Cprod_p%5Cfrac%7B%5Cleft(1-%5Cfrac1%7Bp%5E%7B2s%7D%7D%5Cright)%5E%7B-1%7D%7D%7B%5Cleft(1-%5Cfrac1%7Bp%5E%7Bs%7D%7D%5Cright)%5E%7B-1%7D%7D%5Cend%7Baligned%7D

    %5CRightarrow%20%5Cmathcal%20D(s%2C%5Cmu%5E2)%3D%5Cfrac%7B%5Czeta(2s)%7D%7B%5Czeta(s)%7D

  6. 引入Liouville函数%5Clambda(n)%3D(-1)%5E%7B%5COmega(n)%7D

    %5Cforall%20m%2Cn%5Cin%5Cmathbb%20N%2C%5COmega(mn)%3D%5COmega(m)%2B%5COmega(n)%5CRightarrow%20%5Clambda(mn)%3D%5Clambda(m)%5Clambda(n)

    于是Liouville函数是完全积性的,因此利用Euler乘积,

    %5Cbegin%7Baligned%7D%5Cmathcal%20D(s%2C%5Clambda)%26%3D%5Cprod_p%5Cleft(1-%5Cfrac%7B%5Clambda(p)%7D%7Bp%5Es%7D%5Cright)%5E%7B-1%7D%5C%5C%26%3D%5Cprod_p%5Cleft(1%2B%5Cfrac1%7Bp%5Es%7D%5Cright)%5E%7B-1%7D%5Cend%7Baligned%7D

    于是如法炮制地得到

    %5Cmathcal%20D(s%2C%5Clambda)%3D%5Cfrac%7B%5Czeta(2s)%7D%7B%5Czeta(s)%7D%3D%5Cfrac1%7B%5Cmathcal%20D(s%2C%5Cmu%5E2)%7D

    因此Liouville函数与Mobius函数的平方是互为Dirichlet逆的

  7. %5Czeta(2s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B1%7D%7Bn%5E%7B2s%7D%7D

    注意到该和式只有正整数的平方参与,因此可以设

    %5Ctext%7Bsqrt%7D(n)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%20%2C%26%20%5Cexists%20m%5Cin%5Cmathbb%20N%2Cn%3Dm%5E2%20%5C%5C%200%2C%20%20%26%20%5Ctext%7Botherwise%7D%0A%5Cend%7Barray%7D%5Cright.

    则在其绝对收敛的情况下,

    %5Czeta(2s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Ctext%7Bsqrt%7D(n)%7D%7Bn%5Es%7D

  8. 由omega函数的定义可知

    %5Comega(n)%3D%5Csum_%7Bp%7Cn%7D1%3D1*%5Cmathrm%20p(n)

    其中%5Cmathrm%20p(n)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%20%2C%26%20n%5Cin%20%5Cmathbb%20P%20%5C%5C%200%2C%20%20%26%20n%5Cnotin%5Cmathbb%20P%0A%5Cend%7Barray%7D%5Cright.为素数的示性函数

    %5Cmathcal%20D(s%2C%5Comega)%3D%5Czeta(s)%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Cmathrm%20p(n)%7D%7Bn%5Es%7D%3D%5Czeta(s)%5Csum_p%5Cfrac1%7Bp%5Es%7D

本期内容氵到这就差不多结束了


形式Dirichlet级数的评论 (共 条)

分享到微博请遵守国家法律