欢迎光临散文网 会员登陆 & 注册

人教版 六年级数学下册 第五单元 《鸽巢问题》说课稿

2023-03-15 20:10 作者:bluehouse123  | 我要投稿

《鸽巢问题》说课稿

(第一课时)

题:鸽巢问题

教学内容:教材第68-70页例1、例2,及“做一做”的第1题,及第71页练习十三的1-2题。

教学目标: 

1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重难点: 

重点:引导学生把具体问题转化成“鸽巢问题”。

难点:找出“鸽巢问题”解决的窍门进行反复推理。

教学准备:课件。

教学过程:

一、情境导入:

二、探究新知: 

1.教学例1.(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思?

学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 

(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。

(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 (3)探究证明。

方法一:用“枚举法”证明。

方法二:用“分解法”证明。

4分解成3个数。 由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。

方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

4)认识“鸽巢问题”      

像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 

小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。 ‚

如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔……

小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。

5)归纳总结:

鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。    

2、教学例2(课件出示例题2情境图)

思考问题:

(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?

(二)如果有8本书会怎样呢?10本书呢? 学生通过“探究证明→得出结论”的学习过程来解决问题(一)。

1)探究证明。

方法一:用数的分解法证明。  把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况: 由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。

方法二:用假设法证明。

7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。

2)得出结论。

通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。

1)用假设法分析。 8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 ‚10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。

2)归纳总结:      

综合上面两种情况,要把a本书放进3个抽屉里,如果a÷3=b(本)......1(本)或a÷3=b(本)......2(本),那么一定有1个抽屉里至少放进(b+1)本书。     

鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。

三、巩固练习 

1、完成教材第70页的“做一做”第1题。 学生独立思考解答问题,集体交流、纠正。

2、完成教材第71页练习十三的1-2题。

学生独立思考解答问题,集体交流、纠正。

四、课堂总结

板书设计:  鸽巢问题

思考方法:  枚举法、分解法、假设法

鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数)       

鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。

(第二课时)

题:“鸽巢问题”的具体应用

教学内容:教材第70-71页例3,及“做一做”的第2题,及第71页练习十三的3-4题。

教学目标:

1、知识与技能:在了解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重难点:

重点:引导学生把具体问题转化成“鸽巢问题”。

难点:找出“鸽巢问题”中的“鸽巢”是什么,“鸽巢”有几个,在利用“鸽巢原理”进行反向推理。

教学准备:课件。

教学过程:

一、情境导入

二、探究新知

1、教学例3(课件出示例3的情境图).

出示思考的问题:盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,少要摸出几个球?

学生通过“猜测验证→分析推理”的学习过程解决问题。

1)猜测验证。

猜测1:只摸2个球    只要举出一个反例就可以推翻这种猜测。

就能保证这2个球同色。 验证 如:这两个球正好是一红一蓝时就不能满足条件。

猜测2:摸出5个球,肯定有2个球是同色,把红、蓝两种颜色看作两个“鸽巢”,验证  5÷2=2……1,所以摸出5个球时,至少有3个球是同色的,因此摸出5个球是没必要的。

ƒ 猜测1:摸出3个球,至少有2个球是同色的。把红、蓝两种颜色看作两个“鸽巢”,验证  3÷2=1……1,所以摸出3个球时,至少有2个是同色的。

综上所述,摸出3个球,至少有2个球是同色的。

(2)分析推理。

根据“鸽巢原理(一)”推断:要保证有一个抽屉至少有2个球,分的无图个数失少要比抽屉数多1。现在把“颜色种数”看作“抽屉数”,结论就变成了“要保证摸出2个同色的球,摸出的球的个数至少要比颜色种数多1”。因此,要从两种颜色的球中保证摸出2个同色的,至少要摸出3个球。

2、趁热打铁:箱子里有足够多的5种不同颜色的球,最少取出多少个球才能保证其中一定有2个颜色一样的球?

学生独立思考解决问题,集体交流。

3、归纳总结:

运用“鸽巢原理”解决问题的思路和方法:

1)分析题意;

2)把实际问题转化成“鸽巢问题”,弄清“鸽巢”和分放的“鸽子”。

3)根据“鸽巢原理”推理并解决问题。   

三、巩固练习

1、完成教材第70页的“做一做”的第2题。(学生独立解答,集体交流。)

2、完成教材第71页的练习十三的第3-4题。(学生独立解答,集体交流。)

3、课外拓展延伸题:一个布袋里有红色、黑色、蓝色的袜子各8只。每次从布袋里最少要拿出多少只可以保证其中有2双颜色不同的袜子?(袜子不分左右)

四、课堂总结

板书设计:

鸽巢问题

每个抽屉里放入的物品数

         ↓

1 × 2 + 1 =3(个)

                         ↑

                       抽屉数

(第三课时)

   题:练习课

教学内容:教材71页练习十三的5、6题,及相关的练习题。

教学目标:

1、知识与技能:进一步熟知“鸽巢原理”的含义,会用“鸽巢原理”熟练解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重难点

重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。

难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。

教学准备:课件。

教学过程:

一、复习导入

二、指导练习

(一)基础练习题

1、填一填:

(1)水东小学六年级有30名学生是二月份(按28天计算)出生的,六年级至少有(   )名学生的生日是在二月份的同一天。

(2)有3个同学一起练习投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了(  )个球。

3)把6只鸡放进5个鸡笼,至少有(    )只鸡要放进同1个鸡笼里。

4)某班有个小书架,40个同学可以任意借阅,小书架上至少要有(  )本书,才可以保证至少有1个同学能借到2本或2本以上的书。

学生独立思考解答,集体交流纠正。

2、解决问题。

1)(易错题)六(1)班有50名同学,至少有多少名同学是同一个月出生的?

2)书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书。一次至少要拿出多少本书?

3)把16支铅笔最多放入几个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支?

(二)拓展延伸题

1、把27个球最多放在几个盒子里,可以保证至少有1个盒子里有7个球?

教师引导学生分析:盒子数看作抽屉数,如果要使其中1个抽屉里至少有7个球,那么球的个数至少要比抽屉数的(7-1)倍多1个,而(27-1)÷(7-1)=4……2,因此最多放进4个盒子里,可以保证至少有1个盒子里有7个球。

教师引导学生规范解答:

2、一个袋子里装有红、黄、蓝袜子各5只,一次至少取出多少只可以保证每种颜色至少有1只?

教师引导学生分析:假设先取5只,全是红的,不符合题意,要继续去;假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取5×2+1=11(只)可以保证每种颜色至少有1只。

教师引导学生规范解答:

3、六(2)班的同学参加一次数学考试,满分为100分,全班最低分是75。已知每人得分都是整数,并且班上至少有3人的得分相同。六(2)班至少有多少名同学?

教师引导学生分析:因为最高分是100分,最低分是75分,所以学生可能得到的不同分数有100-745+1=26(种)。

教师引导学生规范解答:

三、巩固练习

完成教材第71页练习十三的5、6题。(学生独立思考解答问题,集体交流、纠正。)

四、课堂总结

板书设计


人教版 六年级数学下册 第五单元 《鸽巢问题》说课稿的评论 (共 条)

分享到微博请遵守国家法律