150. 逆波兰表达式求值
给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
有效的算符为 '+'、'-'、'*' 和 '/' 。
每个操作数(运算对象)都可以是一个整数或者另一个表达式。
两个整数之间的除法总是 向零截断 。
表达式中不含除零运算。
输入是一个根据逆波兰表示法表示的算术表达式。
答案及所有中间计算结果可以用 32 位 整数表示。
示例 1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示:
1 <= tokens.length <= 104
tokens[i] 是一个算符("+"、"-"、"*" 或 "/"),或是在范围 [-200, 200] 内的一个整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/evaluate-reverse-polish-notation
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
波兰表达式:
就是将表达式表示成二叉树然后通过后续遍历表达出来,
通过利用栈可以将其结果计算出来
第一种对法:
class Solution {
public:
int evalRPN(vector<string>& tokens) {
stack<long long> s;
for(int i=0;i<tokens.size();i++){
if(tokens[i]=="+"||tokens[i]=="-"||tokens[i]=="*"||tokens[i]=="/"){
long long a = s.top();s.pop();
long long b = s.top();s.pop();
long long temp=0;
if(tokens[i]=="+"){
temp = a + b;
s.push(temp);
}else if(tokens[i]=="-"){
temp = b - a;
s.push(temp);
}else if(tokens[i]=="*"){
temp = a * b;
s.push(temp);
}else if(tokens[i]=="/"){
temp = b / a;
s.push(temp);
}
}else{
s.push(stoll(tokens[i]));
}
}
return s.top();
}
};
注意:因为是后续遍历出来的字符串,所以因该是第二个作被除数,第一个作除数,
第二个作被减数,第一个作减数