欢迎光临散文网 会员登陆 & 注册

两道三元不等式

2023-05-17 06:50 作者:桌游小黄鸭  | 我要投稿

条件:非负实数a%2Cb%2Cc满足ab%2Bbc%2Bca%3D1,求证

%5Cfrac%7B1%7D%7Ba%2Bb%7D%2B%5Cfrac%7B1%7D%7Bb%2Bc%7D%2B%5Cfrac%7B1%7D%7Bc%2Ba%7D%5Cgeq%5Cfrac%7B5%7D%7B2%7D%2C%5C%5C%0A%5Cfrac%7B1%7D%7B(a%2Bb)%5E2%7D%2B%5Cfrac%7B1%7D%7B(b%2Bc)%5E2%7D%2B%5Cfrac%7B1%7D%7B(c%2Ba)%5E2%7D%5Cgeq%5Cfrac%7B9%7D%7B4%7D.

解答:根据对称性,不妨设a%5Cleq%20b%5Cleq%20c,不难判断出a%5Cleq%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7D. 此时

1%2Ba%5E2%3D(a%2Bb)(a%2Bc)%5Cleq%5Cfrac%7B(a%2Bb%2Ba%2Bc)%5E2%7D%7B4%7D可推出b%2Bc%5Cgeq%202(%5Csqrt%7Ba%5E2%2B1%7D-a%20)%5Cequiv%202t%2C

先考察第一小问. 

%5Cfrac%7B1%7D%7Ba%2Bb%7D%2B%5Cfrac%7B1%7D%7Bb%2Bc%7D%2B%5Cfrac%7B1%7D%7Bc%2Ba%7D%3D%5C%5C%0A%3D%5Cfrac%7Ba%2Bc%2Ba%2Bb%7D%7B(a%2Bb)(a%2Bc)%7D%2B%5Cfrac%7B1%7D%7Bb%2Bc%7D%3D%5Cfrac%7B2a%2B(b%2Bc)%7D%7Ba%5E2%2B1%7D%2B%5Cfrac%7B1%7D%7Bb%2Bc%7D%5Cequiv%5Cfrac%7B2a%2Bx%7D%7Ba%5E2%2B1%7D%2B%5Cfrac%7B1%7D%7Bx%7D%5Cequiv%20f(x).

计算导数可知f'(x)%5Cgeq%200%2C%20%5Cforall%20x%5Cgeq%20%5Csqrt%7Ba%5E2%2B1%7D,再利用b%2Bc%5Cgeq%202(%5Csqrt%7Ba%5E2%2B1%7D-a%20)%5Cgeq%20%5Csqrt%7Ba%5E2%2B1%7D(最后一个不等式不难由a%5Cleq%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7D判断出),

原式左侧=f(b%2Bc)%5Cgeq%20f(2t)%2C为证明第一问,只需证明在t%5E2%2B2at%3D1%2C%20a%5Cleq%20%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7D的条件下有

%5Cfrac%7B2%7D%7Ba%2Bt%7D%2B%5Cfrac%7B1%7D%7B2t%7D%5Cgeq%20%5Cfrac%7B5%7D%7B2%7D即可. 代入a%3D%5Cfrac%7B1%7D%7B2t%7D-%5Cfrac%7Bt%7D%7B2%7D可化为%5Cfrac%7B9t%5E2%2B1%7D%7B2t(1%2Bt%5E2)%7D%5Cgeq%5Cfrac%7B5%7D%7B2%7D%2C这等价于1-5t%2B9t%5E2-5t%5E3%5Cgeq%200,也即等价于(1-t)((1-2t)%5E2%2Bt%5E2)%5Cgeq%200%2C而这是显然的(注意2at%2Bt%5E2%3D1%2C%20t%5E2%5Cleq1%2Ct%5Cleq1). 这就说明了原式左侧%3Df(b%2Bc)%5Cgeq%20f(2t)%5Cgeq%5Cfrac%7B5%7D%7B2%7D.


然后考虑第二小问.

 %5Cfrac%7B1%7D%7B(a%2Bb)%5E2%7D%2B%5Cfrac%7B1%7D%7B(b%2Bc)%5E2%7D%2B%5Cfrac%7B1%7D%7B(c%2Ba)%5E2%7D%3D%5C%5C%0A%3D%5Cfrac%7B2a%5E2%2B2a(b%2Bc)%2Bb%5E2%2Bc%5E2%7D%7B((a%2Bb)(a%2Bc))%5E2%7D%2B%5Cfrac%7B1%7D%7B(b%2Bc)%5E2%7D%3D%5C%5C%0A%3D%5Cfrac%7B2a%5E2-2%2B4a(b%2Bc)%2B(b%2Bc)%5E2%7D%7B(a%5E2%2B1)%5E2%7D%2B%5Cfrac%7B1%7D%7B(b%2Bc)%5E2%7D%5Cequiv%5C%5C%0A%5C%5C%20%5Cequiv%20%5Cfrac%7B2a%5E2-2%2B4ax%2Bx%5E2%7D%7B(a%5E2%2B1)%5E2%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%5Cequiv%20g(x).

求导可知

g'(x)%3D%5Cfrac%7B4a%2B2x%7D%7B(a%5E2%2B1)%5E2%7D-2x%5E%7B-3%7D%5Cgeq%20%5Cfrac%7B4a%2B4(%5Csqrt%7Ba%5E2%2B1%7D-a)%7D%7B(a%5E2%2B1)%5E2%7D-2x%5E%7B-3%7D%3D%5C%5C%0A%3D%5Cfrac%7B4%7D%7B(%5Csqrt%7Ba%5E2%2B1%7D)%5E3%7D-%5Cfrac%7B2%7D%7Bx%5E3%7D%5Cgeq%20%5Cfrac%7B4%7D%7B(%5Csqrt%7Ba%5E2%2B1%7D)%5E3%7D-%5Cfrac%7B2%7D%7B(%5Csqrt%7Ba%5E2%2B1%7D)%5E3%7D%5Cgeq%200%2C

对于x%5Cgeq%202(%5Csqrt%7Ba%5E2%2B1%7D-a)成立,其中上式利用了2(%5Csqrt%7Ba%5E2%2B1%7D-a%20)%5Cgeq%20%5Csqrt%7Ba%5E2%2B1%7D.

仍然令t%5Cequiv(%5Csqrt%7Ba%5E2%2B1%7D-a%20)%2C我们有原式左侧=g(b%2Bc)%5Cgeq%20g(2t)%2C从而只需要在t%5E2%2B2at%3D1%2C%20a%5Cleq%20%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7D的条件下证明%5Cfrac%7B2%7D%7B(a%2Bt)%5E2%7D%2B%5Cfrac%7B1%7D%7B4t%5E2%7D%5Cgeq%20%5Cfrac%7B9%7D%7B4%7D即可。同样代入a%3D%5Cfrac%7B1%7D%7B2t%7D-%5Cfrac%7Bt%7D%7B2%7D并通分,将其等价化为%5Cfrac%7B33t%5E4%2B2t%5E2%2B1%7D%7B(t%5E2%2B1)%5E2t%5E2%7D%5Cgeq%209%2C也即等价于1-7t%5E2%2B15t%5E4-9t%5E6%5Cgeq%200%2C也即等价于(1-t%5E2)(1-3t%5E2)%5E2%5Cgeq%200%2C而这对于满足条件的

t明显成立. 

这就说明原始左侧%3Dg(b%2Bc)%5Cgeq%20g(2t)%5Cgeq%5Cfrac%7B9%7D%7B4%7D%2C结论成立.



两道三元不等式的评论 (共 条)

分享到微博请遵守国家法律