【数学基础61】每天三道题(数学分析+解析几何+线性代数)
预备知识:
lim(1+1/n)^n=e.
公式:(axb)^2+(ab)^2=a^2b^2;
双重向量积:给定空间三向量,先作其中两个向量的向量积,再作所得向量与第三个向量的向量积,那么最后的结果仍然是一向量,叫做所给三向量的双重向量积。例如(axb)xc就是三向量a,b,c的一个双重向量积;
性质:(axb)xc是和a,b共面且垂直于c的向量;
(axb)xc=(ac)b-(bc)a;
拉格朗日恒等式:(axb)(a'xb')=(aa')(bb')-(ab')(ba');
(axb)x(a'xb')=(a,b,b')a'-(a,b,a')b'=(a,a',b')b-(b,a',b')a;
(axb,cxd,exf)=(a,b,d)(c,e,f)-(a,b,c)(d,e,f);
右手系/左手系:设有不共面的三个向量a,b,c,将它们移到同一始点,则a,b决定一个平面,而c指向平面的一旁,将右手四指并拢与拇指分开,使四指向掌心弯曲的方向,表示从a的方向经过小于平角的转动达到b的方向,此时若拇指方向与c方向指向平面的同一旁,则称向量组{a,b,c}构成右手系,否则称为左手系;
直角标架/直角坐标系:设i,j,k是空间中以O为起点的三个向量,它们两两垂直并且都是单位向量,则O;i,j,k称为空间的一个以O为原点的直角标架或直角坐标系,记为{O;i,j,k};
右手直角标架/右手直角坐标系:如果向量i,j,k成右手系,那么{O;i,j,k}称为一个右手架标或右手直角坐标系;否则称为左手直角架标或左手直角坐标系;
直角坐标系的基向量:我们把i,j,k称为该直角坐标系的基向量;
仿射架标/仿射坐标系:如果我们不要求i,j,k单位长度且两两正交,只要求它们不共面,那么{O;i,j,k}称为空间一个以O为原点的仿射架标或仿射坐标系;
右手仿射架标/右手仿射坐标系:如果向量i,j,k成右手系,那么{O;i,j,k}称为一个右手仿射架标或右手仿射坐标系;否则称为左手仿射架标或左手直仿射坐标系;
仿射坐标系的基向量:我们把i,j,k称为该仿射坐标系的基向量.
矩阵乘法运算律——
a.结合律:(AB)C=A(BC)
b.左分配律:A(B+C)=AB+AC
c.右分配律:(B+C)D=BD+CD
d.若A是n级矩阵,单位矩阵为E,则有:AE=EA=A
e.矩阵乘法与数量乘法满足:k(AB)=(kA)B=A(kB)
f.可逆方阵:设A为n阶方阵,若存在n阶方阵B,使AB=BA=E,则称B为A的逆方阵,而称A为可逆方阵。
矩阵A可逆的充要条件:|A|不为0——|A|为矩阵A对应的行列式。
矩阵对应行列式满足:|AB|=|A||B|;
设A与B都是数域K上的n级矩阵,如果AB=E,那么A与B都是可逆矩阵,并且A^(-1)=B,B^(-1)=A。
A的伴随矩阵A*满足:A*=|A|A^(-1)
E(i,j)为单位矩阵i,j行对调——
方阵A可逆,A对调i,j行成B矩阵:B=E(i,j)A
方阵A可逆,A对调i,j列成B矩阵:B=AE(i,j)
矩阵的转置:把n级矩阵A的行与列互换得到的矩阵称为A的转置,记作A',|A'|=|A|。
定义:设A为方阵,若A'=A,则称A为对称矩阵,若A'=-A,则称A为反/斜对称矩阵。
定义:如果AB=BA,则称A与B可交换。
矩阵转置运算律——
(A+B)'=A'+B'
(kA)'=kA'
(AB)'=B'A'
定理:如果A可逆,那么A'也可逆,并且(A')^(-1)=(A^(-1))'。
参考资料:
《数学分析》(华东师范大学数学系 编)
《空间解析几何》(高红铸 王敬蹇 傅若男 编著)
《高等代数题解精粹》(钱吉林 编著)
数学分析——
例题(来自《数学分析(华东师范大学数学系 编)》)——
利用lim(1+1/n)^n=e求下述极限:lim[1+1/(n+1)]^n.
解:
[1+1/(n+1)]^n
={[1+1/(n+1)]^(n+1)}/[1+1/(n+1)]
lim[1+1/(n+1)]^n
=lim{[1+1/(n+1)]^(n+1)}/lim[1+1/(n+1)]
=e/1
=e
解析几何——
例题(来自《空间解析几何(高红铸 王敬蹇 傅若男 编著)》)——
定理:设O;i,j,k是空间的一个仿射坐标系(直角坐标系),则任意一个向量v可以唯一表示成v=xi+yj+zk.
证:
(存在性)
平行移动v使它的起点至坐标原点O,设它的终点为M,即OM=v;
过M点作平行于向量k的直线交向量i,j张成的平面N,过N点作平行于向量j的直线交向量i所在的直线与P;
则v=OM=OP+PN+NM=xi+yj+zk.
(唯一性)
设v还可以表示成i,j,k的另一种形式v=x'i+y'j+z'k;
(xi+yj+zk)-(x'i+y'j+z'k)
=(x-x')i+(y-y')j+(z-z')k
=v-v
=0;
因为i,j,k非零不共面,则x=x',y=y',z=z'.
高等代数——
例题(来自《高等代数题解精粹(钱吉林 编著)》)——
设A^2-A-6E=0,证明A-2E是可逆矩阵,并将它的逆矩阵表为A的多项式。
证:
(A-2E)(A+E)
=A^2-A-2E
=(A^2-A-6E)+4E
=4E;
(A-2E)[(A+E)/4]
=E,则A-2E是可逆矩阵,(A-2E)^(-1)=(A+E)/4.
到这里!