欢迎光临散文网 会员登陆 & 注册

Prime dream(4)——Fejér定理

2022-03-19 16:33 作者:子瞻Louis  | 我要投稿

本系列文集:《Prime dream》

其他文集:《Analysis》《杂文集》

数学分析中的卷积是以反常积分来定义的:f%2Cg%3A%5Cmathbb%20R%5Cto%5Cmathbb%20C

f*g(x)%3A%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)g(x-t)%5Cmathrm%20dt

通常假设上式积分对 x%5Cin%5Cmathbb%20R 都存在,称其为函数 f 与 g 的卷积,通过积分变量代换可知卷积满足对称性

delta型函数族

假设现在有一根质量为1的一维细线被放置在区间 %5B0%2C%5Calpha%5D(%5Calpha%3E0) 上,其密度是均匀分布的,那么它在点t的密度可由以下函数表示:

%5Crho_%5Calpha(t)%3A%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%20%5Cfrac1%5Calpha%20%26%200%5Cle%20t%5Cle%20%5Calpha%20%5C%5C%200%20%26%20%5Ctext%7Botherwise%7D%20%5Cend%7Barray%7D%5Cright.

它会随着 α 的减小非零的区间越来越小,直到趋于零,同时非零区间的值也越来越大,但它始终满足:

%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Crho_%5Calpha(t)%5Cmathrm%20dt%3D1

令 %5Calpha%5Cto0 ,就得到了Dirac函数

  • %5Cforall%20t%E2%89%A00%2C%20%5Cdelta(t)%3D0

  • %5Cint_%7B%5Cmathbb%20R%7D%5Cdelta(t)%5Cmathrm%20dt%3D%5Cint_%7B-%5Cepsilon%7D%5E%5Cepsilon%5Cdelta(t)%5Cmathrm%20dt%3D1

其中%5Cepsilon是任意小的正数,我们能得到以下性质:

f*%5Cdelta(x)%3D%5Clim_%7B%5Calpha%5Cto0%7Df*%5Crho_%5Calpha(x)%3D%5Clim_%7B%5Calpha%5Cto0%7D%5Cfrac1%5Calpha%5Cint_%7Bx-%5Calpha%7D%5Ex%20f(t)%5Cmathrm%20dt

容易发现若 f 在点x连续,则 f*%5Cdelta(x)%5Cto%20f(x)  ,这启发我们引入以下定义:

#)对依赖于参变量 %5Calpha%5Cin%20A 的函数 %5CDelta_%5Calpha%3A%5Cmathbb%20R%5Cto%5Cmathbb%20R 构成的函数族 %5C%7B%5CDelta_%5Calpha%2C%5Calpha%5Cin%20A%5C%7D ,如果

  • %5Cforall%20%5Calpha%5Cin%20A%2C%5CDelta_%5Calpha(x)%5Cge0

  • %5Cforall%20%5Calpha%5Cin%20A%2C%5Cint_%5Cmathbb%20R%5CDelta_%5Calpha%20(t)%5Cmathrm%20dt%3D1

  • %5Cforall%20%5Crho%3E0%2C%5Clim_%7B%5Calpha%5Cto%20%5Comega%7D%5Cint_%7B-%5Crho%7D%5E%5Crho%5CDelta_%5Calpha(t)%5Cmathrm%20dt%3D1

那么就称该函数族在 %5Calpha%5Cto%5Comega 时是delta型函数族,注意到由第一二个条件可推出第三个条件显然等价于

%5Clim_%7B%5Calpha%5Cto%20%5Comega%7D%5Cint_%7B%7Ct%7C%5Cge%5Crho%7D%5CDelta_%5Calpha(t)%5Cmathrm%20dt%3D0

Dirac函数是 %5Crho_%5Calpha 中 %5Calpha%5Cto0 的结果,所以函数族 %5C%7B%5Crho_%5Calpha%2C%5Calpha%5Cin%5Cmathbb%20R%5E%2B%5C%7D 构成的当然是delta型函数族,然后给出一个定义:

#’)函数 f%3AI%5Cto%5Cmathbb%20C 若满足:

x%5Cin%20E%5Csubset%20I%2C%5Cforall%20%5Cepsilon%3E0%2C%5Cexists%5Crho%3E0%2C%5Ctext%7Bs.t.%7D%5Cforall%20%7Cx-x'%7C%3C%5Crho%5CRightarrow%7Cf(x)-f(x')%7C%3C%5Cepsilon

则称 f 在 E%5Csubset%20I 上一致连续

第一眼看到它可能会想到这不就是连续的定义嘛,但仔细一想还是有所不同的——其实当中的%5Crho%3D%5Crho(%5Cepsilon)是只依赖于%5Cepsilon的正数,而连续的标准定义中的ρ是和点x也有关的,这也说明了一致连续的函数必定是连续的,紧接着可以证明以下关于delta型函数族卷积的收敛性定理

(定理)有界函数 f%3A%5Cmathbb%20R%5Cto%5Cmathbb%20C 在 E%5Csubset%5Cmathbb%20R 上一致连续,若对 %5Calpha%5Cto%5Comega 时的delta型函数族%5C%7B%5CDelta_%5Calpha%2C%5Calpha%5Cin%20A%5C%7D,卷积 %5Cforall%20%5Calpha%5Cin%5Cmathbb%20A%2Cf*%5CDelta_%5Calpha(x) 存在,则

x%5Cin%20E%2C%5Calpha%5Cto%5Comega%5Cquad%20%5CRightarrow%20f*%5CDelta_%5Calpha(x)%5Crightrightarrows%20f(x)

  设在 %5Cmathbb%20R%7Cf(x)%7C%5Cle%20M,取 %5Cepsilon%3E0%2C%5Crho%3D%5Crho(%5Cepsilon)%3E0,对 x%5Cin%20E%2C%5Calpha%5Cto%5Comega 

%5Cbegin%7Baligned%7D%26%7Cf*%5CDelta_%7B%5Calpha%7D(x)-f(x)%7C%5C%5C%3D%20%26%5Cleft%7C%5Cint_%7B%5Cmathbb%20R%7Df(x-t)%5CDelta_%5Calpha(t)%5Cmathrm%20dt-f(x)%5Cright%7C%3D%5Cleft%7C%5Cint_%7B%5Cmathbb%20R%7D(f(x-t)-f(x))%5CDelta_%5Calpha(t)%5Cmathrm%20dt%5Cright%7C%5C%5C%5Cle%20%26%5Cint_%7B-%5Crho%7D%5E%5Crho%7Cf(x-t)-f(x)%7C%5CDelta_%5Calpha(t)%5Cmathrm%20dt%2B%5Cint_%7B%7Ct%7C%5Cge%5Crho%7D%7Cf(x-t)-f(x)%7C%5CDelta_%5Calpha(t)%5Cmathrm%20dt%5C%5C%3C%26%5Cepsilon%2B2M%5Cint_%7B%7Ct%7C%5Cge%5Crho%7D%5CDelta_%7B%5Calpha%7D(t)%5Cmathrm%20dt%5Cend%7Baligned%7D

由Delta型函数族的定义可知最后一个积分实际上是趋于零的,于是 %5Cforall%5Cepsilon%2C%20%5Cepsilon'%3E0%2C%5Calpha%5Cto%5Comega

%7Cf*%5CDelta_%5Calpha(x)-f(x)%7C%3C%5Cepsilon%2B%5Cepsilon'

对所有 x%5Cin%20E 都成立,即 f*%5CDelta_%5Calpha 当 %5Calpha%5Cto%5Comega 时在 E 上一致收敛到 f

%5Csquare

Fejér定理

周期2π的函数 f Fourier级数部分和:

S_N(x)%3D%5Csum_%7Bn%3D-N%7D%5EN%5Cleft(%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)e%5E%7B-int%7D%5Cmathrm%20dt%5Cright)e%5E%7Binx%7D

其Cesàro平均为

%5Csigma_N(x)%3A%3D%5Cfrac%7BS_0(x)%2B%5Cdots%2BS_N(x)%7D%7BN%2B1%7D

根据上一章我们将部分和写为积分:

S_n(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x-t)%5Cfrac%7B%5Csin%5Cleft(n%2B%5Cfrac12%5Cright)t%7D%7B%5Csin%5Cfrac12t%7D%5Cmathrm%20dt

于是有

  • %5Csigma_N(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x-t)%5Cmathcal%20F_N(t)%5Cmathrm%20dt

其中

%5Cmathcal%20F_N(t)%3A%3D%5Cfrac1%7BN%2B1%7D%5Csum_%7Bn%3D0%7D%5EN%5Cfrac%7B%5Csin%5Cleft(n%2B%5Cfrac12%5Cright)t%7D%7B%5Csin%5Cfrac12t%7D

称为Fourier级数的Fejer核,利用积化和差公式,有

%5Csin%5Cleft(n%2B%5Cfrac12%5Cright)t%5Csin%5Cfrac12t%3D%5Cfrac%7B%5Ccos%20nt-%5Ccos%20(n%2B1)t%7D2

由此可得

%5Cbegin%7Baligned%7D%5Cmathcal%20F_N(t)%26%3D%5Cfrac1%7BN%2B1%7D%5Ccdot%5Cfrac1%7B%5Csin%5E2%5Cfrac12t%7D%5Csum_%7Bn%3D0%7D%5EN%5Csin%5Cleft(n%2B%5Cfrac12%5Cright)t%5Csin%5Cfrac12t%5C%5C%26%3D%5Cfrac1%7BN%2B1%7D%5Ccdot%5Cfrac1%7B%5Csin%5E2%5Cfrac12t%7D%5Csum_%7Bn%3D0%7D%5EN%5Cfrac%7B%5Ccos%20nt-%5Ccos(n%2B1)t%7D2%5C%5C%26%3D%5Cfrac1%7BN%2B1%7D%5Ccdot%5Cfrac%7B1-%5Ccos(N%2B1)t%7D%7B2%5Csin%5E2%5Cfrac12t%7D%3D%5Cfrac1%7BN%2B1%7D%5Ccdot%5Cfrac%7B%5Csin%5E2%5Cfrac%7BN%2B1%7D2t%7D%7B%5Csin%5E2%5Cfrac12t%7D%5Cend%7Baligned%7D

可以根据Dirichlet核的性质,得到一个比较著名的积分:

  • %5Cint_%7B-%5Cpi%7D%5E%5Cpi%5Cfrac%7B%5Csin%5E2%5Cfrac%7BN%2B1%7D2t%7D%7B%5Csin%5E2%5Cfrac12t%7D%5Cmathrm%20dt%3D2(N%2B1)%5Cpi

接着定义函数

%5Cmathfrak%20A_N(t)%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Brcl%7D%5Cfrac%7B%5Cmathcal%20F_N(t)%7D%7B2%5Cpi%7D%2C%20%26%20%7Ct%7C%5Cleq%202%5Cpi%5C%5C0%2C%20%26%20%7Ct%7C%3E2%5Cpi%5Cend%7Barray%7D%5Cright.

可以验证该函数对正整数N组成的函数族在 N%5Cto%5Cinfty 时是delta型函数族:

  • %5Cforall%20N%5Cin%5Cmathbb%20N%5E%2B%2C%5Cmathfrak%20A_N(t)%5Cge0

  • %5Cforall%20N%5Cin%5Cmathbb%20N%5E%2B%2C%5Cint_%7B%5Cmathbb%20R%7D%5Cmathfrak%20A_N(t)%5Cmathrm%20dt%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%5Cmathcal%20F_N(t)%5Cmathrm%20dt%3D1

  • %5Cforall%20%5Crho%3E0%2C%5Cint_%7B%7Ct%7C%5Cge%5Crho%7D%5Cmathfrak%20A_N(t)%5Cmathrm%20dt%3D%5Cfrac1%7B%5Cpi%7D%5Cint_%7B%5Crho%7D%5E%5Cpi%5Cmathcal%20F_N(t)%5Cmathrm%20dt%5Cle%5Cfrac1%7B%5Cpi(N%2B1)%7D%5Cint_%7B%5Crho%7D%5E%5Cpi%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Csin%5E2%5Cfrac12t%7D%5Cxrightarrow%7BN%5Cto%5Cinfty%7D0

又因为

%5Csigma_N(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x-t)%5Cmathcal%20F_N(t)%5Cmathrm%20dt%3Df*%5Cmathfrak%20A_N(x)

所以由delta型函数卷积的收敛性定理可以得到以下定理

(Fejér定理)f%3A%5Cmathbb%20R%5Cto%5Cmathbb%20C 是 %5B-%5Cpi%2C%5Cpi%5D 上绝对可积,周期为2π的函数,若 f 在 E%5Csubset%5Cmathbb%20R 上一致连续,则

x%5Cin%20E%2CN%5Cto%5Cinfty%2C%5Cquad%20%5CRightarrow%20%5Csigma_N(x)%5Crightrightarrows%20f(x)

微积分中的Cauchy命题表明,Fourier级数部分和的极限若存在,则它与它的Cesàro平均收敛到相同的极限,因此函数 f 的Fourier级数在它的连续点处要么发散,要么收敛到它本身

通过类似上一末结尾的操作,可以用变量代换将该结论推广到任何周期函数

Fourier积分的Fejér定理

用类似的方法将Fourier级数推广至Fourier积分,对满足一定条件的函数 f ,其Fourier积分为

I(x)%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%7B%5Cleft(%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-2%5Cpi%20i%5Comega%20t%7D%5Cmathrm%20dt%5Cright)%7De%5E%7B2%5Cpi%20i%5Comega%20x%7D%5Cmathrm%20d%5Comega

作代换%5Cxi%3D2%5Cpi%5Comega,可得

I(x)%3D%5Cfrac1%7B2%5Cpi%20%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%7B%5Cleft(%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-i%5Cxi%20t%7D%5Cmathrm%20dt%5Cright)%7De%5E%7Bi%5Cxi%20x%7D%5Cmathrm%20d%5Cxi

为了方便,记

F(%5Cxi)%3A%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-i%5Cxi%20t%7D%5Cmathrm%20dt

取 I 的绝对值不超过A的积分

I_A(x)%3A%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-A%7D%5EAF(%5Cxi)e%5E%7Bi%5Cxi%20x%7D%5Cmathrm%20d%5Cxi

其积分平均为

%5Cmathfrak%20S_T(x)%3D%5Cfrac1T%5Cint_0%5ETI_A(x)%5Cmathrm%20dA

画出这个二重积分的积分区域

手绘积分区域

由此交换求和顺序可得

%5Cbegin%7Baligned%7D%5Cmathfrak%20S_T(x)%26%3D%5Cfrac1T%5Cint_%7B-T%7D%5ET%5Cint_%7B%7C%5Cxi%7C%7D%5ETF(%5Cxi)e%5E%7Bi%5Cxi%20x%7D%5Cmathrm%20dA%5Cmathrm%20d%5Cxi%5C%5C%26%3D%5Cint_%7B-T%7D%5ET%5Cleft(1-%5Cfrac%7B%7C%5Cxi%7C%7DT%5Cright)F(%5Cxi)e%5E%7Bi%5Cxi%20x%7D%5Cmathrm%20d%5Cxi%5Cend%7Baligned%7D

再由F的定义,有

%5Cmathfrak%20S_T(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)%5Cmathfrak%20F_T(x-t)%5Cmathrm%20dt

其中 %5Cmathfrak%20F_T 是积分Fejer核,

%5Cmathfrak%20F_T(u)%3A%3D%5Cint_%7B-T%7D%5ET%5Cleft(1-%5Cfrac%7B%7C%5Cxi%7C%7DT%5Cright)e%5E%7Bi%5Cxi%20u%7D%5Cmathrm%20d%5Cxi

通过分部积分可以算得

%5Cmathfrak%20F_T(u)%3DT%5Cleft(%5Cfrac%7B%5Csin%20Tu%2F2%7D%7BTu%2F2%7D%5Cright)%5E2

令 k_T%3A%3D%5Cfrac%7B%5Cmathfrak%20F_T%7D%7B2%5Cpi%7D ,则

%5Cmathfrak%20S_T(x)%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)k_T(x-t)%5Cmathrm%20dt%3Df*k_T(x)

首先显然有 k_T 非负,再由其定义,我们可以引入以下函数:

%5CPhi_T(%5Cxi)%3A%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%20%5Cleft(1-%5Cfrac%7B%7C%5Cxi%7C%7D%7BT%7D%5Cright)%2C%20%26%7C%5Cxi%7C%5Cle%20T%20%5C%5C0%2C%20%26%20%7C%5Cxi%7C%3ET%5Cend%7Barray%7D%20%5Cright.

显然它满足Lipschitz条件,因此可以将其写为Fourier积分,

%5Cbegin%7Baligned%7D%5CPhi_T(w)%26%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Ccolor%7Bred%7D%7B%5Cleft(%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5CPhi_T(%5Cxi)e%5E%7Bi%5Cxi%20u%7D%5Cmathrm%20d%5Cxi%5Cright)%7De%5E%7B-iwu%7D%5Cmathrm%20du%5C%5C%26%3D%5Cint_%7B%5Cmathbb%20R%7Dk_T(u)e%5E%7Biwu%7D%5Cmathrm%20du%5Cend%7Baligned%7D

取 w=0 ,可得对任意 T%3E0

  • %5Cint_%5Cmathbb%20R%20k_T(u)%5Cmathrm%20du%3D1

与此同时又得到了一个有用的积分:

%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Cleft(%5Cfrac%7B%5Csin%20Tu%2F2%7D%7BTu%2F2%7D%5Cright)%5E2%5Cmathrm%20du%3D%5Cfrac%7B2%5Cpi%7D%7BT%7D

又有对 %5Crho%3E0 ,当 T%5Cto%5Cinfty

  • %5Cint_%7B%7Cu%7C%5Cge%5Crho%7D%20k_T(u)%5Cmathrm%20du%3D%5Cfrac1%5Cpi%5Cint_%7B%5Crho%7D%5E%5Cinfty%5Cmathfrak%20F_T(u)%5Cmathrm%20du%5Cle%5Cfrac4%7BT%5Cpi%20%7D%5Cint_%7B%5Crho%7D%5E%5Cinfty%5Cfrac1%7Bu%5E2%7D%5Cmathrm%20du%5Cxrightarrow%7BT%5Cto%5Cinfty%7D0

这说明了 k_T 组成的函数族在 T%5Cto%5Cinfty 是delta型函数族,于是由其卷积的收敛性定理,可得Fourier积分的Fejér定理:

(Fejér定理)f%3A%5Cmathbb%20R%5Cto%5Cmathbb%20C 是 %5Cmathbb%20R 上绝对可积的函数,若 f 在 E%5Csubset%5Cmathbb%20R 上一致连续,则

x%5Cin%20E%2CT%5Cto%5Cinfty%5Cquad%5CRightarrow%20%5Cmathfrak%20S_T(x)%5Crightrightarrows%20f(x)

结语

这期我们由卷积与Dirac函数引入了delta型函数族,并证明了满足某种条件时,它与函数的卷积收敛于该函数,于是得以证明了fourier分析中的Fejér定理,这个定理将会在下一期素数定理(较弱形式)的证明中用到,没错,正是数论中大名鼎鼎的素数定理,尽管这个定理看上去与素数毫无联系,但它们就是存在如此微妙的联系——这就是数学,不是么?


参考

  1. 《数学分析》 by B.A.卓里奇

  2. 《Fourier Analysis》 by Javier Duoandikoetxea (writ.), David Cruz

  3. 《数论导引》by 华罗庚


Prime dream(4)——Fejér定理的评论 (共 条)

分享到微博请遵守国家法律