欢迎光临散文网 会员登陆 & 注册

直流电机驱动器能量回收

2023-07-17 10:15 作者:MPS芯源系统  | 我要投稿

介绍

当永磁电机驱动器减速时,存储在机械系统里的能量会通过电机驱动返回至电源。如果无法正确计算出这部分能量的大小,则会引起电源电压升高,从而损坏电机驱动器或系统其他部件。

本文将探索如何安全地消除此种能量。为简化操作,我们选用直流有刷电机为例,当然,给出的方案同样也适用于无刷电机系统。

能量守恒

能量守恒定律,物理学基本定律——能量既不会凭空产生,也不会凭空消失。

物体(如质量)通过移动或旋转而产生动能。在电机系统中,动能来自于为电机供电的电源,电机产生转矩以加速质量运动。

在电机转子的惯性和与电机相连的机械系统中都有能量储存。简而言之,可以将机械系统设想为与电机轴耦合的飞轮(见图1)。

Figure 1: Flywheel Example of a Mechanical System
图1:机械系统中的“飞轮”

这里可根据公式 ½ Iω2 计算出动能,其中 I 为惯性力矩,ω 为角速度。速度越快或惯性越大,则储存的能量就越多。

很明显,意思是说物体的运动需要能量。然而,反过来,当你想停止运动时会发生什么呢?当正在运动的质量停止或减速时,它所储存的能量必然有所去处,那么,这些能量会去哪儿呢?

当切断旋转电机的电源时,运动质量中储存的能量会消散到系统的机械损失中。由于摩擦力的影响,大部分能量被转化成了热能(见图2)。除非摩擦力很大,不然电机停止的速度也会很慢。此时,驱动电机由电动状态转变为发电状态,但由于没有电流路径,便也没有电磁转矩来帮助停止电机。

Figure 2: Friction in a Stopping Motor
图2:电机停止转动时的摩擦力

若能为电流提供电流短路输出路径,则电流会产生与旋转方向相反的转矩(见图3),这样就可以使电机快速停止。但此种情况下,制动产生的能量会被消耗在被短接电机的绕组电阻和电流路径中的电阻上,进而会以热量的形式散发。

Figure 3: Torque in Opposition to Rotation
图3:与旋转方向相反的转矩

此种方法有时也称作“短路刹车”。实际上,短路通常是指通过打开H桥的下管MOSFET来提供电流路径。

当控制系统想要快速降低电机速度时,施加在电机上的电流极性会被反转,以提供与之转动方向相反的转矩。然后,储存的动能可通过电机驱动电路返回至电源。

如果电源是一块完美的电池,那么能量就会回流到电池中并被加以回收。而现实情况并非如此,电源通常为直流电源,除非该电源经过特殊设计,否则只能产生电流。由于直流电源无法吸收电流的特性,回流的能量只能进入作为电源一部分的电容中。

电容器中储存的能量可通过公式 ½CV2计算得出,其中c为电容,v为电压。能量流入电容器后,电容器上的电压必然会增加(见图4)。

继续阅读 >>>请复制下方链接进入MPS官网查看:

https://www.monolithicpower.cn/202307_4


直流电机驱动器能量回收的评论 (共 条)

分享到微博请遵守国家法律