欢迎光临散文网 会员登陆 & 注册

2023浙江大学强基数学逐题解析(8)

2023-07-06 00:03 作者:CHN_ZCY  | 我要投稿

封面:《明日酱的水手服》


22. 三条直线l_1%2Cl_2%2Cl_3两两平行,l_1l_2间的距离为1,l_2l_3间的距离为%5Cfrac%7B1%7D%7B2%7Dl_1l_3间的距离为%5Cfrac%7B3%7D%7B2%7DA%2CBl_1上的两个定点且AB%3D2M%2CNl_2上的两个动点且MN%3D2;三角形AMN的外心记为点C,点Cl_3的距离为d,求%5Cleft(d%2B%5Cleft%7CBC%5Cright%7C%5Cright)的最小值.

答案  %5Cfrac%7B%5Csqrt%7B17%7D%7D%7B2%7D.

解析

由于

%5Cfrac%7B3%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B2%7D

所以l_1%2Cl_2%2Cl_3在同一平面上,且l_2l_1%2Cl_3之间.

过点AAO%5Cbot%20l_2于点O.

不妨设%5Coverrightarrow%7BMN%7D%5Coverrightarrow%7BAB%7D同向.

O为原点,MNx轴正方向,OAy轴正方向,建立平面直角坐标系.

M%5Cleft(t%2C0%5Cright),则N%5Cleft(t%2B2%2C0%5Cright).

C%5Cleft(t%2B1%2Cy_C%5Cright),得

y_C%5E2%2B1%3D%5Cleft(t%2B1%5Cright)%5E2%2B%5Cleft(y_C-1%5Cright)%5E2

%5Cleft(t%2B1%5Cright)%5E2%3D2y_C

所以C在抛物线x%5E2%3D2y上.

F%5Cleft(0%2C%5Cfrac%7B1%7D%7B2%7D%5Cright),则

d%2B%5Cleft%7CBC%5Cright%7C%3D%5Cleft%7CCF%5Cright%7C%2B%5Cleft%7CBC%5Cright%7C%5Cgeq%5Cfrac%7B%5Csqrt%7B17%7D%7D%7B2%7D

当且仅当C在线段BF上(含端点),即

C%5Cleft(%5Cfrac%7B1%2B%5Csqrt%7B17%7D%7D%7B4%7D%2C%5Cfrac%7B9%2B%5Csqrt%7B17%7D%7D%7B16%7D%5Cright)

也即t%3D%5Cfrac%7B-3%2B%5Csqrt%7B17%7D%7D%7B4%7D时取等.

所以%5Cleft(d%2B%5Cleft%7CBC%5Cright%7C%5Cright)的最小值为%5Cfrac%7B%5Csqrt%7B17%7D%7D%7B2%7D.

23. 今年是浙江大学建校126周年,将一个边长为126的正六边形划分成一系列边与正六边形的边平行且边长为1的正三角形,我们设这些正三角形的顶点所能构成的正六边形的数量为n,求n在十进制下的末位数字.

答案  1.

解析  

设将一个边长为m%5Cleft(m%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)的正六边形(记作“大正六边形”)划分成一系列边与正六边形的边平行且边长为1的正三角形后,这些正三角形的顶点所能构成的正六边形(记作“格点正六边形”)的数量为a_m.

若某正六边形满足:

对其任意的边l_1,都存在大正六边形的某条边l_2l_1l_2平行或重合.

则记其符合性质A.

若某符合性质A的正六边形的边长为k%5Cleft(1%5Cleq%20k%20%5Cleq%20m%20%2Ck%20%5Cin%20%5Cmathbb%7BN%7D%5E*%20%5Cright),则记其符合性质A_k.

那么,符合性质A_k的格点正六边形的个数为

2%5Ccdot%20%5Cfrac%7B%5Cleft(m-k%2B1%5Cright)%5Cleft(m-k%2B1%2B2m-2k%2B1%5Cright)%7D%7B2%7D-%5Cleft(2m-2k%2B1%5Cright)%3D3k%5E2-%5Cleft(6m%2B3%5Cright)k%2B3m%5E2%2B3m%2B1

符合性质A_k的格点正六边形的内接格点正六边形(包括其本身)的个数为k.

可以证明,不符合性质A的格点正六边形,必然内接于唯一的符合性质A的格点正六边形.

记所有格点正六边形构成的集合为S,所有符合性质A_k的格点正六边形的内接格点正六边形(包括它们本身)构成的集合为S_k.

S_1%20%5Ccup%20S_2%20%5Ccup%20S_3%20%5Ccup%20%5Ccdots%20%5Ccup%20S_m%20%3DS

且对任意的i%2Cj%5Cleft(1%5Cleq%20i%20%5Cleq%20m%20%2Ci%20%5Cin%20%5Cmathbb%7BN%7D%5E*%3B1%5Cleq%20j%20%5Cleq%20m%20%2Cj%20%5Cin%20%5Cmathbb%7BN%7D%5E*%20%5Cright),有

S_i%20%5Ccap%20S_j%20%3D%5Cvarnothing

所以

%5Cbegin%7Baligned%7D%0Aa_m%3D%5Cmathrm%7Bcard%7D%5Cleft(S%5Cright)%26%3D%5Csum_%7Bk%3D1%7D%5Em%20%5Cmathrm%7Bcard%7D%5Cleft(S_k%5Cright)%5C%5C%26%0A%3D%20%5Csum_%7Bk%3D1%7D%5Em%20k%5Cleft%5B3k%5E2-%5Cleft(6m%2B3%5Cright)k%2B3m%5E2%2B3m%2B1%5Cright%5D%5C%5C%26%3D%20%5Csum_%7Bk%3D1%7D%5Em%5Cleft%5B3k%5E3-%5Cleft(6m%2B3%5Cright)k%5E2%2B%5Cleft(3m%5E2%2B3m%2B1%5Cright)k%5Cright%5D%5C%5C%26%0A%3D3%5Ccdot%5Cfrac%7Bm%5E2%5Cleft(m%2B1%5Cright)%5E2%7D%7B4%7D-%5Cleft(2m%2B1%5Cright)%5Ccdot%20%5Cfrac%7Bm%5Cleft(m%2B1%5Cright)%5Cleft(2m%2B1%5Cright)%7D%7B2%7D%2B%5Cleft(3m%5E2%2B3m%2B1%5Cright)%5Ccdot%5Cfrac%7Bm%5Cleft(m%2B1%5Cright)%7D%7B2%7D%5C%5C%26%0A%3D%5Cfrac%7B1%7D%7B4%7Dm%5E4%2B%5Cfrac%7B1%7D%7B2%7Dm%5E3%2B%5Cfrac%7B1%7D%7B4%7Dm%5E2%5C%5C%26%0A%3D%5Cleft%5B%5Cfrac%7Bm%5Cleft(m%2B1%5Cright)%7D%7B2%7D%5Cright%5D%5E2%0A%5Cend%7Baligned%7D

因此

n%3Da_%7B126%7D%3D%5Cleft(%5Cfrac%7B126%5Ccdot127%7D%7B2%7D%5Cright)%5E2%3D63%5E2%5Ccdot127%5E2%20%5Cequiv%201%20%5Cpmod%20%7B10%7D

所以n在十进制下的末位数字为1.






2023浙江大学强基数学逐题解析(8)的评论 (共 条)

分享到微博请遵守国家法律