欢迎光临散文网 会员登陆 & 注册

YoloV5改进策略:SwiftFormer,全网首发,独家改进的高效加性注意力用于实时移动视觉

2023-10-26 22:40 作者:AI小浩  | 我要投稿

摘要

本文提出了新型高效加性注意力机制,替代传统自注意力机制中的二次矩阵乘法操作,线性元素级乘法可实现关键-值交互的替换。该高效自注意力机制可在网络所有阶段使用,不会牺牲准确性。同时介绍了名为“SwiftFormer”的模型系列,在准确性和移动推理速度方面达到了最先进的性能。其中一种小规模变体在iPhone 14上以仅0.8毫秒的延迟实现了78.5%的ImageNet-1K准确率,比MobileViT-v2更准确且快两倍,可用于分类、检测和分割等视觉应用。与EfficientFormer-L1相比,SwiftFormer-L1在准确率方面绝对增加了1.7%,同时保持相同的延迟,且不需要任何神经架构搜索。

将其引入到YoloV8中,会有什么样的效果呢?

文章链接:https://blog.csdn.net/m0_47867638/article/details/133897551?spm=1001.2014.3001.5502

YoloV5官方代码测试结果

YOLOv5l summary: 267 layers, 46275213 parameters, 0 gradients, 108.2 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95100%|██████████| 15/15 [00:02<00:00,  5.16it/s]
                   all        230       1412      0.971       0.93      0.986      0.729
                   c17        230        131      0.992      0.992      0.995      0.797
                    c5        230         68      0.953          1      0.994       0.81
            helicopter        230         43      0.974      0.907      0.948       0.57
                  c130        230         85          1      0.981      0.994       0.66
                   f16        230         57      0.999       0.93      0.975      0.677
                    b2        230          2      0.971          1      0.995      0.746
                 other        230         86      0.987      0.915      0.974      0.545
                   b52        230         70      0.983      0.957      0.981      0.803
                  kc10        230         62          1      0.977      0.985      0.819
               command        230         40      0.971          1      0.986      0.782
                   f15        230        123      0.992      0.976      0.994      0.655
                 kc135        230         91      0.988      0.989      0.986      0.699
                   a10        230         27          1      0.526      0.912      0.391
                    b1        230         20      0.949          1      0.995      0.719
                   aew        230         25      0.952          1      0.993      0.781
                   f22        230         17      0.901          1      0.995      0.763
                    p3        230        105      0.997       0.99      0.995      0.789
                    p8        230          1      0.885          1      0.995      0.697
                   f35        230         32      0.969      0.984      0.985      0.569
                   f18        230        125      0.974      0.992       0.99      0.806
                   v22        230         41      0.994          1      0.995      0.641
                 su-27        230         31      0.987          1      0.995      0.842
                 il-38        230         27      0.994          1      0.995      0.785
                tu-134        230          1      0.879          1      0.995      0.796
                 su-33        230          2          1          0      0.995      0.846
                 an-70        230          2      0.943          1      0.995      0.895
                 tu-22        230         98      0.983          1      0.995      0.788

改进一

测试结果

YOLOv5l summary: 490 layers, 28495747 parameters, 0 gradients, 58.5 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95100%|██████████| 15/15 [00:03<00:00,  4.49it/s]
                   all        230       1412      0.911      0.956       0.99      0.712
                   c17        230        131      0.974          1      0.995      0.816
                    c5        230         68      0.907          1       0.99      0.824
            helicopter        230         43      0.939          1      0.974      0.595
                  c130        230         85      0.963          1      0.995      0.668
                   f16        230         57      0.893      0.982      0.985      0.679
                    b2        230          2      0.767          1      0.995      0.547
                 other        230         86      0.849      0.965      0.959      0.484
                   b52        230         70      0.951      0.971      0.984      0.812
                  kc10        230         62      0.984      0.968      0.985      0.815
               command        230         40      0.982          1      0.995      0.774
                   f15        230        123      0.944          1      0.995      0.658
                 kc135        230         91      0.969      0.989      0.985      0.659
                   a10        230         27      0.903      0.963      0.983      0.462
                    b1        230         20      0.944          1      0.995      0.608
                   aew        230         25       0.91          1      0.995      0.767
                   f22        230         17      0.839          1      0.995      0.713
                    p3        230        105      0.875      0.981      0.992      0.779
                    p8        230          1       0.62          1      0.995      0.697
                   f35        230         32       0.91          1      0.994      0.542
                   f18        230        125      0.981      0.992      0.992      0.809
                   v22        230         41      0.981          1      0.995      0.729
                 su-27        230         31      0.898          1      0.995      0.833
                 il-38        230         27      0.955          1      0.995      0.805
                tu-134        230          1      0.918          1      0.995      0.895
                 su-33        230          2          1          0      0.995      0.647
                 an-70        230          2      0.764          1      0.995      0.796
                 tu-22        230         98      0.967          1      0.995      0.796

改进二

测试结果

YOLOv5l summary: 307 layers, 58420493 parameters, 0 gradients, 135.0 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95100%|██████████| 15/15 [00:03<00:00,  4.43it/s]
                   all        230       1412      0.977      0.936       0.99      0.733
                   c17        230        131       0.99          1      0.995      0.815
                    c5        230         68      0.981          1      0.995      0.835
            helicopter        230         43      0.954      0.964      0.977      0.606
                  c130        230         85          1      0.989      0.995      0.643
                   f16        230         57          1      0.957      0.981      0.687
                    b2        230          2      0.948          1      0.995      0.821
                 other        230         86          1      0.916      0.983      0.548
                   b52        230         70      0.955      0.957      0.972      0.799
                  kc10        230         62          1      0.977      0.985      0.812
               command        230         40      0.972          1      0.979      0.796
                   f15        230        123      0.983          1      0.995      0.684
                 kc135        230         91      0.989      0.958      0.975       0.69
                   a10        230         27          1      0.555      0.969      0.396
                    b1        230         20      0.988          1      0.995      0.738
                   aew        230         25      0.955          1      0.992      0.774
                   f22        230         17      0.962          1      0.995      0.736
                    p3        230        105      0.996          1      0.995      0.789
                    p8        230          1      0.921          1      0.995      0.697
                   f35        230         32          1          1      0.995      0.511
                   f18        230        125       0.99      0.992      0.991      0.825
                   v22        230         41      0.997          1      0.995      0.699
                 su-27        230         31      0.987          1      0.995      0.822
                 il-38        230         27      0.993          1      0.995       0.82
                tu-134        230          1      0.882          1      0.995      0.796
                 su-33        230          2          1          0      0.995      0.846
                 an-70        230          2       0.94          1      0.995      0.796
                 tu-22        230         98       0.99          1      0.995      0.814

改进三

测试结果

Fusing layers... 
YOLOv5l summary: 762 layers, 57360717 parameters, 0 gradients, 136.5 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95100%|██████████| 15/15 [00:03<00:00,  3.94it/s]
                   all        230       1412      0.971      0.944      0.983      0.714
                   c17        230        131      0.983          1      0.995      0.818
                    c5        230         68      0.971      0.998       0.99      0.811
            helicopter        230         43      0.932      0.977      0.971      0.598
                  c130        230         85      0.998          1      0.995      0.674
                   f16        230         57      0.995      0.965      0.984       0.67
                    b2        230          2      0.977          1      0.995      0.697
                 other        230         86      0.987      0.911      0.961      0.511
                   b52        230         70      0.987      0.986      0.986      0.811
                  kc10        230         62      0.997      0.984      0.986      0.815
               command        230         40      0.983          1      0.995      0.817
                   f15        230        123      0.981          1      0.995      0.674
                 kc135        230         91      0.995      0.989      0.986      0.674
                   a10        230         27          1      0.779      0.967      0.389
                    b1        230         20      0.993          1      0.995      0.635
                   aew        230         25       0.95          1      0.993      0.772
                   f22        230         17      0.886          1      0.976      0.749
                    p3        230        105      0.992      0.981      0.995      0.778
                    p8        230          1      0.889          1      0.995      0.597
                   f35        230         32      0.968      0.938      0.992      0.546
                   f18        230        125       0.99      0.992      0.993      0.818
                   v22        230         41      0.996          1      0.995      0.695
                 su-27        230         31      0.977          1      0.995      0.832
                 il-38        230         27      0.987          1      0.995      0.812
                tu-134        230          1      0.893          1      0.995      0.796
                 su-33        230          2          1          0      0.828      0.728
                 an-70        230          2      0.924          1      0.995      0.796
                 tu-22        230         98      0.996          1      0.995      0.774




YoloV5改进策略:SwiftFormer,全网首发,独家改进的高效加性注意力用于实时移动视觉的评论 (共 条)

分享到微博请遵守国家法律