欢迎光临散文网 会员登陆 & 注册

二阶递推数列整理

2021-03-21 01:08 作者:Cuprate  | 我要投稿

章前置芝士:数列、不动点、特征方程

在教辅中看到几道不错的题目,先暂且记录下来

关于二阶递推式变式转换(与下文例题无关)


转换1:

a_%7Bn%2B2%7D%3Dp*a_%7Bn%2B1%7D%2Bq*a_n%5Crightarrow%20a_%7Bn%2B1%7D%5E2-a_%7Bn%2B2%7D*a_n%3Da*b%5En(p%2Cq%5Cneq0)

证明:

%5Cbecause%20p*a_%7Bn%2B1%7D%3Da_%7Bn%2B2%7D-q*a_n%2Cp*a_%7Bn%2B2%7D%3Da_%7Bn%2B3%7D-q*a_%7Bn%2B1%7D

%5Ctherefore%20p*a_%7Bn%2B1%7D*(a_%7Bn%2B3%7D-q*a_%7Bn%2B1%7D)%3Dp*a_%7Bn%2B2%7D*(a_%7Bn%2B2%7D-q*a_n)

%5Cbecause%20p%5Cneq0

%5Cthereforea_%7Bn%2B2%7D%5E2-a_%7Bn%2B3%7D*a_%7Bn%2B1%7D%3D(-q)(a_%7Bn%2B1%7D%5E2-a_%7Bn%2B2%7D*a_n)

%5Ctherefore%20a_%7Bn%2B1%7D%5E2-a_%7Bn%2B2%7D*a_n%3D(-q)%5E%7Bn-1%7D(a_2%5E2-a_3*a_1)

%5Cquad%3D%5Cfrac%7B1%7D%7Bq%7D(q*a_1%5E2%2Bp*a_2a_1-a_2%5E2)(-q)%5En


转换2:a_%7Bn%2B1%7D%5E2-a_%7Bn%2B2%7D*a_n%3Da*b%5En%5Crightarrow%20a_%7Bn%2B2%7D%3Dp*a_%7Bn%2B1%7D%2Bq*a_n%20(%5Cforall%20n%5Cin%20N%5E*%2Ca_n%5Cneq0)

证明:

%5Cbecause%20a_%7Bn%2B1%7D%5E2-a_%7Bn%2B2%7D*a_n%3Da*b%5En%2Ca_%7Bn%2B2%7D%5E2-a_%7Bn%2B3%7D*a_%7Bn%2B1%7D%3Da*b%5E%7Bn%2B1%7D

%5Ctherefore%20a_%7Bn%2B2%7D%5E2-a_%7Bn%2B3%7D*a_%7Bn%2B1%7D%3Db(a_%7Bn%2B1%7D%5E2-a_%7Bn%2B2%7D*a_n)

%5Cquad%20a_%7Bn%2B2%7D*(a_%7Bn%2B2%7D%2Bb*a_%7Bn%7D)%3Da_%7Bn%2B1%7D*(a_%7Bn%2B3%7D%2Bb*a_%7Bn%2B1%7D)

%5Cbecause%20%5Cforall%20n%5Cin%20N%5E*%2Ca_n%5Cneq0

%5Ctherefore%5Cfrac%7Ba_%7Bn%2B3%7D%2Bb*a_%7Bn%2B1%7D%7D%7Ba_%7Bn%2B2%7D%7D%3D%5Cfrac%7Ba_%7Bn%2B2%7D%2Bb*a_n%7D%7Ba_%7Bn%2B1%7D%7D

%5Ctherefore%5Cfrac%7Ba_%7Bn%2B2%7D%2Bb*a_n%7D%7Ba_%7Bn%2B1%7D%7D%3D%5Cfrac%7Ba_3%2Bb*a_1%7D%7Ba_2%7D

%5Cbecause%20a_3%3D%5Cfrac%7Ba_2%5E2-ab%7D%7Ba_1%7D

%5Ctherefore%5Cfrac%7Ba_3%2Bb*a_1%7D%7Ba_2%7D%3D%5Cfrac%7Ba_2%5E2%2Bb*a_1%5E2-ab%7D%7Ba_1a_2%7D

%5Ctherefore%20a_%7Bn%2B2%7D%3D%5Cfrac%7Ba_2%5E2%2Bb*a_1%5E2-ab%7D%7Ba_1a_2%7Da_%7Bn%2B1%7D-ba_n


例题1:a_1%3Da_2%3D1%2Ca_%7Bn%2B2%7D%3D3a_%7Bn%2B1%7D%2B18a_n-2*5%5En,求a_n


例题2:a_1%3D1%2Ca_2%3D2%2Ca_%7Bn%2B2%7D%3D7a_%7Bn%2B1%7D-a_n,证明a_na_%7Bn%2B1%7D-1是完全平方数


例题3:a_1%3Da_2%3Da_3%3D1%2Ca_%7Bn%2B3%7D%3D%5Cfrac%7Ba_%7Bn%2B2%7D*a_%7Bn%2B1%7D%2Bk%7D%7Ba_%7Bn%7D%7D(k%3E0)

(1)2a_%7B2n%7D%3Da_%7B2n-1%7D%2Ba_%7B2n%2B1%7D%2C(k%2B2)a_%7B2n%2B1%7D%3Da_%7B2n%2B2%7D%2Ba_%7B2n%7D

(2)(k%2B2)a_%7B2n%2B1%7D%5E2%2Bk%3D2a_%7B2n%2B2%7D*a_%7B2n%7D%2C2a_%7B2n%7D%5E2%2Bk%3D(k%2B2)a_%7B2n%2B1%7D*a_%7B2n-1%7D

(3)a_n



例题1解答:

先忽略2*5%5En项,用特征方程x%5E2-3x-18%3D0得特征根%5Clambda_1%3D6%2C%5Clambda_2%3D-3

将原递推式转化为a_%7Bn%2B2%7D%2B3a_%7Bn%2B1%7D%2BA*5%5E%7Bn%2B1%7D%3D6(a_%7Bn%2B1%7D%2B3a_n%2BA*5%5En)

待定系数得A%3D-2

%5Cbecause%20a_2%2B3*a_1-10%3D-6

%5Ctherefore%20a_%7Bn%2B1%7D%2B3a_n-2*5%5En%3D-6%5En

同理,将递推式转化为a_%7Bn%2B1%7D%2BB_1*5%5E%7Bn%2B1%7D%2BB_2*6%5E%7Bn%2B1%7D%3D-3(a_n%2BB_1*5%5En%2BB_2*6%5En)

待定系数得B_!%3D-%5Cfrac%7B1%7D%7B4%7D%2CB_2%3D%5Cfrac%7B1%7D%7B9%7D

%5Cbecause%20a_1-%5Cfrac%7B5%7D%7B4%7D%2B%5Cfrac%7B6%7D%7B9%7D%3D%5Cfrac%7B5%7D%7B12%7D

%5Ctherefore%20a_n%3D%5Cfrac%7B5%5En%7D%7B4%7D-%5Cfrac%7B6%5En%7D%7B9%7D-%5Cfrac%7B5(-3)%5En%7D%7B36%7D



例题2解答:

a_%7Bn%2B2%7D%3D7a_%7Bn%2B1%7D-a_n(a_%7Bn%2B2%7D-a_n)(a_%7Bn%2B2%7D-7a_%7Bn%2B1%7D%2Ba_n)%3D0

整理得a_%7Bn%2B2%7D%5E2-7a_%7Bn%2B2%7Da_%7Bn%2B1%7D%3Da_n%5E2-7a_na_%7Bn%2B1%7D

等号两边同加a_%7Bn%2B1%7D%5E2a_%7Bn%2B2%7D%5E2%2Ba_%7Bn%2B1%7D%5E2-7a_%7Bn%2B2%7Da_%7Bn%2B1%7D%3Da_%7Bn%2B1%7D%5E2%2Ba_n%5E2-7a_na_%7Bn%2B1%7D

%5Ctherefore%20a_%7Bn%2B1%7D%5E2%2Ba_n%5E2-7a_na_%7Bn%2B1%7D%3Da_2%5E2%2Ba_1%5E2-7a_2a_1%3D-9

%5Ctherefore%20(a_%7Bn%2B1%7D%2Ba_n)%5E2%3D9(a_%7Bn%2B1%7Da_n-1)a_%7Bn%2B1%7Da_n-1是完全平方数



例题3简答:

(1)a_4%3D%5Cfrac%7Ba_3*a_2%2Bk%7D%7Ba_1%7D%3Dk%2B1

%5Cbecause%20a_%7Bn%2B3%7D*a_n-a_%7Bn%2B2%7D*a_%7Bn%2B1%7D%3Dk%3Da_%7Bn%2B4%7D*a_%7Bn%2B1%7D-a_%7Bn%2B3%7D*a_%7Bn%2B2%7D

%5Ctherefore%20a_%7Bn%2B1%7D*(a_%7Bn%2B4%7D%2Ba_%7Bn%2B2%7D)%3Da_%7Bn%2B3%7D*(a_%7Bn%2B2%7D%2Ba_n)

%5Cquad%5Cfrac%7Ba_%7Bn%2B4%7D%2Ba_%7Bn%2B2%7D%7D%7Ba_%7Bn%2B3%7D%7D%3D%5Cfrac%7Ba_%7Bn%2B2%7D%2Ba_n%7D%7Ba_%7Bn%2B1%7D%7D(n%5Cin%20N%5E*)

%5Ctherefore%5Cfrac%7Ba_%7B2n%2B1%7D%2Ba_%7B2n-1%7D%7D%7Ba_%7B2n%7D%7D%3D%5Cfrac%7Ba_%7B2n-1%7D%2Ba_%7B2n-3%7D%7D%7Ba_%7B2n-2%7D%7D%3D...%3D%5Cfrac%7Ba_3%2Ba_1%7D%7Ba_2%7D%3D2

%5Cquad%5Cfrac%7Ba_%7B2n%2B2%7D%2Ba_%7B2n%7D%7D%7Ba_%7B2n%2B1%7D%7D%3D%5Cfrac%7Ba_%7B2n%7D%2Ba_%7B2n-2%7D%7D%7Ba_%7B2n-1%7D%7D%3D...%3D%5Cfrac%7Ba_4%2Ba_2%7D%7Ba_3%7D%3Dk%2B2

%5Ctherefore2a_%7B2n%7D%3Da_%7B2n-1%7D%2Ba_%7B2n%2B1%7D%2C(k%2B2)a_%7B2n%2B1%7D%3Da_%7B2n%2B2%7D%2Ba_%7B2n%7D%20(n%5Cin%20N%5E*)


(2)2(k%2B2)a_%7B2n%7D*a_%7B2n%2B1%7D%3D2(k%2B2)a_%7B2n%2B1%7D*a_%7B2n%7D

%5Cbecause2a_%7B2n%7D%3Da_%7B2n-1%7D%2Ba_%7B2n%2B1%7D%2C(k%2B2)a_%7B2n%2B1%7D%3Da_%7B2n%2B2%7D%2Ba_%7B2n%7D

%5Ctherefore(k%2B2)a_%7B2n%2B1%7D*(a_%7B2n%2B1%7D%2Ba_%7B2n-1%7D)%3D2a_%7B2n%7D*(a_%7B2n%2B2%7D*a_%7B2n%7D)

整理得2a_%7B2n%7D%5E2-(k%2B2)a_%7B2n%2B1%7D*a_%7B2n-1%7D%3D(k%2B2)a_%7B2n%2B1%7D%5E2-a_%7B2n%2B2%7D*a_%7B2n%7D(n%5Cin%20N%5E*)

同理,可由2(k%2B2)a_%7B2n%2B1%7D*a_%7B2n%2B2%7D%3D2(k%2B2)a_%7B2n%2B2%7D*a_%7B2n%2B1%7D推得

2a_%7B2n%2B2%7D%5E2-(k%2B2)a_%7B2n%2B3%7D*a_%7B2n%2B1%7D%3D(k%2B2)a_%7B2n%2B1%7D%5E2-a_%7B2n%2B2%7D*a_%7B2n%7D

%5Ctherefore2a_%7B2n%2B2%7D%5E2-(k%2B2)a_%7B2n%2B3%7D*a_%7B2n%2B1%7D%3D2a_%7B2n%7D%5E2-(k%2B2)a_%7B2n%2B1%7D*a_%7B2n-1%7D

%5Ctherefore2a_%7B2n%7D%5E2-(k%2B2)a_%7B2n%2B1%7D*a_%7B2n-1%7D%3D2a_%7B2n-2%7D%5E2-(k%2B2)a_%7B2n-1%7D*a_%7B2n-3%7D%3D...%3D2a_2%5E2-(k%2B2)a_3*a_1%3D-k

%5Cquad(k%2B2)a_%7B2n%2B1%7D%5E2-a_%7B2n%2B2%7D*a_%7B2n%7D%3D2a_%7B2n%7D%5E2-(k%2B2)a_%7B2n%2B1%7D*a_%7B2n-1%7D%3D-k

%5Ctherefore(k%2B2)a_%7B2n%2B1%7D%5E2%2Bk%3D2a_%7B2n%2B2%7D*a_%7B2n%7D%2C2a_%7B2n%7D%5E2%2Bk%3D(k%2B2)a_%7B2n%2B1%7D*a_%7B2n-1%7D%20(n%5Cin%20N%5E*)


(3)%5Cbecause%202a_%7B2n%7D%3Da_%7B2n-1%7D%2Ba_%7B2n%2B1%7D%2C(k%2B2)a_%7B2n%2B1%7D%3Da_%7B2n%2B2%7D%2Ba_%7B2n%7D%20(n%5Cin%20N%5E*)

%5Ctherefore2(k%2B2)a_%7B2n%2B2%7D%3D(k%2B2)a_%7B2n%2B1%7D%2B(k%2B2)a_%7B2n%2B3%7D%3Da_%7B2n%7D%2B2a_%7B2n%2B2%7D%2Ba_%7B2n%2B4%7D

%5Cquad(2k%2B2)a_%7B2n%2B2%7D%3Da_%7B2n%7D%2Ba_%7B2n%2B4%7D

同理,(2k%2B2)a_%7B2n%2B1%7D%3Da_%7B2n-1%7D%2Ba_%7B2n%2B3%7D

%5Ctherefore%20(2k%2B2)a_%7Bn%2B2%7D%3Da_%7Bn%2B4%7D%2Ba_n%20(n%5Cin%20N%5E*)

不妨设b_n%3Da_%7B2n-1%7D(n%5Cin%20N%5E*)

b_%7Bn%2B2%7D-(2k%2B2)b_%7Bn%2B1%7D%2Bb_n%3D0对应特征方程%5Clambda%5E2-(2k%2B2)%5Clambda%2B1%3D0

%5CDelta%3D(2k%2B2)%5E2-4%3D4k%5E2%2B8k

%5Cbecause%20k%3E0

%5Ctherefore%5CDelta%3E0

特征根%5Clambda_1%3Dk%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D%2C%5Clambda_2%3Dk%2B1-%5Csqrt%7Bk%5E2%2B2k%7D%2C%5Clambda_1%3E%5Clambda_2%3E0

%5Ctherefore%20b_n%3Dc_1*(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)%5En%2Bc_2*(k%2B1-%5Csqrt%7Bk%5E2%2B2k%7D)%5En

b_1%3Db_2%3D1联立方程

%5Cbegin%7Bcases%7D(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)*c_1%2B(k%2B1-%5Csqrt%7Bk%5E2%2B2k%7D)*c_2%3D1%20%5C%5C(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)%5E2*c_1%2B(k%2B1-%5Csqrt%7Bk%5E2%2B2k%7D)%5E2*c_2%3D1%5Cend%7Bcases%7D

解得%5Cbegin%7Bcases%7Dc_1%3D%5Cfrac%7B1%7D%7B(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)*(k%2B2%2B%5Csqrt%7Bk%5E2%2B2k%7D)%7D%20%5C%5Cc_2%3D%5Cfrac%7B(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)%5E2%7D%7Bk%2B2%2B%5Csqrt%7Bk%5E2%2B2k%7D%7D%5Cend%7Bcases%7D

%5Ctherefore%20b_n%3D%5Cfrac%7B1%7D%7Bk%2B2%2B%5Csqrt%7Bk%5E2%2B2k%7D%7D%5B(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)%5E%7Bn-1%7D%2B(k%2B1-%5Csqrt%7Bk%5E2%2B2k%7D)%5E%7Bn-2%7D%5D(n%5Cin%20N%5E*)

同理,可设d_n%3Da_%7B2n%7D(n%5Cin%20N%5E*)

%5Ctherefore%20a_n%3D%5Cbegin%7Bcases%7D%5Cfrac%7B1%7D%7Bk%2B2%2B%5Csqrt%7Bk%5E2%2B2k%7D%7D%5B(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)%5E%5Cfrac%7Bn-1%7D%7B2%7D%2B(k%2B1-%5Csqrt%7Bk%5E2%2B2k%7D)%5E%5Cfrac%7Bn-3%7D%7B2%7D%5D%5Cquad%20n%3D2t-1%5C%5C%5Cfrac%7B1%7D%7B2%7D%5B(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)%5E%7B%5Cfrac%7B1%7D%7B2%7Dn-1%7D%2B(k%2B1-%5Csqrt%7Bk%5E2%2B2k%7D)%5E%7B%5Cfrac%7B1%7D%7B2%7Dn-1%7D%5D%5Cqquad%5Cqquad%5C%20%20n%3D2t%5Cend%7Bcases%7D%5Cqquad%20t%5Cin%20N%5E*


题目来源:《数学教学通讯》、《数列与数学归纳法》

转载请注明出处

二阶递推数列整理的评论 (共 条)

分享到微博请遵守国家法律