欢迎光临散文网 会员登陆 & 注册

抄点不会的杨子胥抽代习题Day0

2023-02-17 21:00 作者:RIP_Official  | 我要投稿


证明:设x%2Cy%5Cin%20G,有%5Cvarphi(xy)%3D%5Cvarphi(x)%5Cvarphi(y)%5Cvarphi(yx)%3D%5Cvarphi(y)%5Cvarphi(x).

(xy)%5E3%3Dx%5E3y%5E3%0A(yx)%5E3%3Dy%5E3x%5E3,

进而(yx)%5E2%3Dx%5E2y%5E2(xy)%5E2%3Dy%5E2x%5E2,

同理(y%5E2x%5E2)%5E2%3Dx%5E4y%5E4%2C

考虑(xy)%5E4%3D((xy)%5E2)%5E2%3D(y%5E2x%5E2)%5E2%3Dx%5E4y%5E4

从而(yx)%5E3%3Dx%5E3y%5E3,即%5Cvarphi(xy)%3D%5Cvarphi(yx),由%5Cvarphi%0A单,知道xy%3Dyx%0A,即证.              

证明:设%5Cvarphi%5Cin%20C(%7B%5Crm%20Aut%7DG),%5Cphi_a%3Ax%5Cto%20a%5E%7B-1%7Dxa%5Cin%5Crm%20InnG.

于是%5Cvarphi%5Cphi_a%3D%5Cphi_a%5Cvarphi,即

%5Cvarphi(a%5E%7B-1%7Dxa)%3Da%5E%7B-1%7D%5Cvarphi(x)%20a,%5Cforall%20x%5Cin%20G.

这样%5Cvarphi(a)%5E%7B-1%7D%5Cvarphi(x)%5Cvarphi(a)%3Da%5E%7B-1%7D%5Cvarphi(x)a,从而%5Cvarphi(a)a%5E%7B-1%7D%5Cvarphi(x)%3D%5Cvarphi(x)%5Cvarphi(a)a%5E%7B-1%7D,

于是由%5Cvarphi(x)任意性知道%5Cvarphi(a)%3Da,由a任意性知道%5Cvarphi%3D%5Crm%20Id.

 第二个做的时候单纯地想到了InnG了,但是不知道和AutG搞在一起,完全不知道,总感觉有某些神奇手段避免和InnG接触,看了答案之后也不清楚为啥这样.这样不会那也忘了,寄了。

抄点不会的杨子胥抽代习题Day0的评论 (共 条)

分享到微博请遵守国家法律