欢迎光临散文网 会员登陆 & 注册

2023.03.27, 03.28, 03.29 ArXiv精选

2023-03-29 21:10 作者:PaperABC  | 我要投稿
  • 关注领域

    • AIGC

    • 3D computer vision learning

    • Fine-grained learning

    • GNN

    • 其他

  • 声明

    • 论文较多,时间有限,本专栏无法做文章的讲解,只挑选出符合PaperABC研究兴趣和当前热点问题相关的论文,如果你的research topic和上述内容有关,那本专栏可作为你的论文更新源或Paper reading list.

Paper list:

今日ArXiv共更新108

03.28共更新248

03.27共更新128



NeRF

HandNeRF: Neural Radiance Fields for Animatable Interacting Hands

https://arxiv.org/pdf/2303.13825.pdf

手势仿真NeRF.


ABLE-NeRF: Attention-Based Rendering with Learnable Embeddings for Neural Radiance Field

https://arxiv.org/pdf/2303.13817.pdf

南洋理工S-Lab的工作.


GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from Multi-view Images

https://arxiv.org/pdf/2303.13777.pdf


UrbanGIRAFFE: Representing Urban Scenes as Compositional Generative Neural Feature Fields

https://arxiv.org/pdf/2303.14167.pdf

整体思想还是做组合物体生成,但是这篇文章聚焦urban scene. 手速真快啊!


AIGC

MindDiffuser: Controlled Image Reconstruction from Human Brain Activity with Semantic and Structural Diffusion

https://arxiv.org/pdf/2303.14139.pdf

基于脑信号来绘制图像的文章,前段时间非常火.


Fantasia3D: Disentangling Geometry and Appearance for High-quality Text-to-3D Content Creation

https://arxiv.org/pdf/2303.13873.pdf


解耦几何和外观的文本到3D的生成工作,这个领域近半年已经卷成红海了!


CompoNeRF: Text-guided Multi-object Compositional NeRF with Editable 3D Scene Layout

https://arxiv.org/pdf/2303.13843.pdf

又是一篇,组合多物体生成.来自于HKUST. 你们卷吧 我不玩了.


Conditional Image-to-Video Generation with Latent Flow Diffusion Models

https://arxiv.org/pdf/2303.13744.pdf

利用latent flow diffusion model 实现图像到视频的生成任务.


Anti-DreamBooth: Protecting users from personalized text-to-image synthesis

https://arxiv.org/pdf/2303.15433.pdf

一篇防止生成模型类似于DreamBooth,滥用图像的工作.


Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation

https://arxiv.org/pdf/2303.15413.pdf

真的是什么样的idea都有,卷不动这个领域.


Text-to-Image Diffusion Models are Zero-Shot Classifiers

https://arxiv.org/pdf/2303.15233.pdf

扩散模型学习到的知识能用来分类吗?很有启发性的工作.


Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior

https://arxiv.org/pdf/2303.14184.pdf

单张图像生成3D物体,感觉做法和Magic3D很类似.


VLP

Best of Both Worlds: Multimodal Contrastive Learning with Tabular and Imaging Data

https://arxiv.org/pdf/2303.14080.pdf

表格数据和图像数据的多模态预训练工作.


Accelerating Vision-Language Pretraining with Free Language Modeling

https://arxiv.org/pdf/2303.14038.pdf

VLP领域做加速的工作,来自腾讯团队.


Prompt Tuning based Adapter for Vision-Language Model Adaption

https://arxiv.org/pdf/2303.15234.pdf

利用prompt tuning来微调VLP大模型


2023.03.27, 03.28, 03.29 ArXiv精选的评论 (共 条)

分享到微博请遵守国家法律