欢迎光临散文网 会员登陆 & 注册

一种相当正经(枯燥)的解法(2018北京圆锥曲线)

2022-07-18 13:59 作者:数学老顽童  | 我要投稿

(2018北京理,19)已知抛物线Cy%5E2%3D2px经过点P%5Cleft(%201%2C2%20%5Cright)%20,过点Q%5Cleft(%200%2C1%20%5Cright)%20的直线l与抛物线C有两个不同的交点AB.且直线PAy轴于M,直线PBy轴于N.

(1)求直线l的斜率的取值范围;

(2)设O为原点,%5Coverrightarrow%7BQM%7D%3D%5Clambda%20%5Coverrightarrow%7BQO%7D%5Coverrightarrow%7BQN%7D%3D%5Cmu%20%5Coverrightarrow%7BQO%7D,求证:%5Cfrac%7B1%7D%7B%5Clambda%7D%2B%5Cfrac%7B1%7D%7B%5Cmu%7D为定值.

解:(1)由2%5E2%3D2p%5Ccdot%201解得

p%3D2

所以抛物线C的方程为y%5E2%3D4x

l的方程为y%3Dkx%2B1

与抛物线C联立,得

k%5E2x%5E2%2B%5Cleft(%202k-4%20%5Cright)%20x%2B1%3D0

显然k%5Cne%200

%5CvarDelta%20%3D%5Cleft(%202k-4%20%5Cright)%20%5E2-4k%5E2%5Ccdot%201%3D16%5Cleft(%201-k%20%5Cright)%20%3E0

所以k%3C1

又因为直线PAPB皆与y轴相交,

所以直线PAPB必不过%5Cleft(%201%2C-2%20%5Cright)%20

所以l亦不过%5Cleft(%201%2C2%20%5Cright)%20

k%5Cne%20-3

综上所述:

k%5Cin%20%5Cleft(%20-%5Cinfty%20%2C-3%20%5Cright)%20%5Ccup%20%5Cleft(%20-3%2C0%20%5Cright)%20%5Ccup%20%5Cleft(%200%2C1%20%5Cright)%20

(2)先画图

由(1)知

x_1%2Bx_2%3D%5Cfrac%7B4-2k%7D%7Bk%5E2%7Dx_1x_2%3D%5Cfrac%7B1%7D%7Bk%5E2%7D

直线PA的方程为

y-2%3D%5Cfrac%7By_1-2%7D%7Bx_1-1%7D%5Cleft(%20x-1%20%5Cright)%20

y-2%3D%5Cfrac%7Bkx_1-1%7D%7Bx_1-1%7D%5Cleft(%20x-1%20%5Cright)%20

x%3D0,可得

y_M%3D2-%5Cfrac%7Bkx_1-1%7D%7Bx_1-1%7D

同理,y_N%3D2-%5Cfrac%7Bkx_2-1%7D%7Bx_2-1%7D

%5Coverrightarrow%7BQM%7D%3D%5Clambda%20%5Coverrightarrow%7BQO%7D知,

%5Cleft(%200%2Cy_M-1%20%5Cright)%20%3D%5Clambda%20%5Cleft(%200%2C-1%20%5Cright)%20

y_M-1%3D-%5Clambda

%5Cfrac%7B1%7D%7B%5Clambda%20%20%7D%3D%5Cfrac%7B1%7D%7B1-y_M%7D

同理,%5Cfrac%7B1%7D%7B%5Cmu%20%20%7D%3D%5Cfrac%7B1%7D%7B1-y_N%7D

所以

%5Cbegin%7Baligned%7D%0A%09%5Cfrac%7B1%7D%7B%5Clambda%7D%2B%5Cfrac%7B1%7D%7B%5Cmu%7D%26%3D%5Cfrac%7B1%7D%7B1-%5Cleft(%202-%5Cfrac%7Bkx_1-1%7D%7Bx_1-1%7D%20%5Cright)%7D%2B%5Cfrac%7B1%7D%7B1-%5Cleft(%202-%5Cfrac%7Bkx_2-1%7D%7Bx_2-1%7D%20%5Cright)%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7Bk-1%7D%5Cleft(%202-%5Cfrac%7Bx_1%2Bx_2%7D%7Bx_1x_2%7D%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7Bk-1%7D%5Cleft(%202-%5Cfrac%7B%5Cfrac%7B4-2k%7D%7Bk%5E2%7D%7D%7B%5Cfrac%7B1%7D%7Bk%5E2%7D%7D%20%5Cright)%5C%5C%0A%09%26%3D2%5C%5C%0A%5Cend%7Baligned%7D



一种相当正经(枯燥)的解法(2018北京圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律