利用同构思想简化计算(2018浙江圆锥曲线)
(2018浙江,21)已知点
是
轴左侧(不含
轴)一点,抛物线
:
上存在不同的两点
、
满足
、
的中点均在
上.
(1)设
中点为
,证明:
垂直于
轴;
(2)若
是半椭圆
(
)上的动点,求
面积的取值范围.



解:(1)设点、
、
的坐标分别为
、
、
,
易知的中点坐标为
,
因该点在抛物线上,所以
,
化简得,

同理,

可知、
为一元二次方程
的两个不同实根,
所以,

所以,
即垂直于
轴.


(2)由(1)可知,

故

所以




所以

因为,
所以,
所以.