欢迎光临散文网 会员登陆 & 注册

利用同构思想简化计算(2018浙江圆锥曲线)

2022-09-19 15:08 作者:数学老顽童  | 我要投稿

(2018浙江,21)已知点Py轴左侧(不含y轴)一点,抛物线Cy%5E2%3D4x上存在不同的两点AB满足PAPB的中点均在C上.

(1)设AB中点为M,证明:PM垂直于y轴;

(2)若P是半椭圆x%5E2%2B%5Cfrac%7By%5E2%7D%7B4%7D%3D1x%3C0)上的动点,求%5Cbigtriangleup%20PAB面积的取值范围.

解:(1)设点PAB的坐标分别为

%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%5Cleft(%20%5Cfrac%7By_%7B1%7D%5E%7B2%7D%7D%7B4%7D%2Cy_1%20%5Cright)%20%5Cleft(%20%5Cfrac%7By_%7B2%7D%5E%7B2%7D%7D%7B4%7D%2Cy_2%20%5Cright)%20

易知PA的中点坐标为

%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x_0%2B%5Cfrac%7By_%7B1%7D%5E%7B2%7D%7D%7B4%7D%20%5Cright)%20%2C%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20y_0%2By_1%20%5Cright)%20%5Cright)%20

因该点在抛物线C上,所以

%5Cleft%5B%20%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20y_0%2By_1%20%5Cright)%20%5Cright%5D%20%5E2%3D4%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x_0%2B%5Cfrac%7By_%7B1%7D%5E%7B2%7D%7D%7B4%7D%20%5Cright)%20

化简得%5Ccolor%7Bred%7D%7By_%7B1%7D%7D%5E%7B2%7D-2y_0%5Ccdot%20%5Ccolor%7Bred%7D%7By_%7B1%7D%7D%2B8x_0-y_%7B0%7D%5E%7B2%7D%3D0

同理%5Ccolor%7Bred%7D%7By_%7B2%7D%7D%5E%7B2%7D-2y_0%5Ccdot%20%5Ccolor%7Bred%7D%7By_%7B2%7D%7D%2B8x_0-y_%7B0%7D%5E%7B2%7D%3D0

可知y_1y_2为一元二次方程

%5Ccolor%7Bred%7D%7By%7D%5E%7B2%7D-2y_0%5Ccdot%20%5Ccolor%7Bred%7D%7By%7D%2B8x_0-y_%7B0%7D%5E%7B2%7D%3D0

的两个不同实根,

所以y_1%2By_2%3D2y_0

所以%5Ccolor%7Bred%7D%7By_M%7D%3D%5Cfrac%7By_1%2By_2%7D%7B2%7D%5Ccolor%7Bred%7D%7B%3Dy_0%7D

PM垂直于y轴.

(2)由(1)可知y_1y_2%3D8x_0-y_%7B0%7D%5E%7B2%7D

%5Cbegin%7Baligned%7D%0A%09%5Ccolor%7Bred%7D%7Bx_M%7D%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20%5Cfrac%7By_%7B1%7D%5E%7B2%7D%7D%7B4%7D%2B%5Cfrac%7By_%7B2%7D%5E%7B2%7D%7D%7B4%7D%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B8%7D%5Cleft(%20y_%7B1%7D%5E%7B2%7D%2By_%7B2%7D%5E%7B2%7D%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B8%7D%5Cleft%5B%20%5Cleft(%20y_1%2By_2%20%5Cright)%20%5E2-2y_1y_2%20%5Cright%5D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B8%7D%5Cleft%5B%20%5Cleft(%202y_0%20%5Cright)%20%5E2-2%5Cleft(%208x_0-y_%7B0%7D%5E%7B2%7D%20%5Cright)%20%5Cright%5D%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B3%7D%7B4%7Dy_%7B0%7D%5E%7B2%7D-2x_0%7D%5C%5C%0A%5Cend%7Baligned%7D

所以

%5Cbegin%7Baligned%7D%0A%09%5Ccolor%7Bred%7D%7B%5Cleft%7C%20PM%20%5Cright%7C%7D%26%3Dx_M-x_0%5C%5C%0A%09%26%3D%5Cfrac%7B3%7D%7B4%7Dy_%7B0%7D%5E%7B2%7D-2x_0-x_0%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B3%7D%7B4%7Dy_%7B0%7D%5E%7B2%7D-3x_0%7D%5C%5C%0A%5Cend%7Baligned%7D

%5Cbegin%7Baligned%7D%0A%09%5Ccolor%7Bred%7D%7B%5Cleft%7C%20y_1-y_2%20%5Cright%7C%7D%26%3D%5Csqrt%7B%5Cleft(%20y_1%2By_2%20%5Cright)%20%5E2-4y_1y_2%7D%5C%5C%0A%09%26%3D%5Csqrt%7B%5Cleft(%202y_0%20%5Cright)%20%5E2-4%5Cleft(%208x_0-y_%7B0%7D%5E%7B2%7D%20%5Cright)%7D%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B2%5Csqrt%7B2%7D%5Ccdot%20%5Csqrt%7By_%7B0%7D%5E%7B2%7D-4x_0%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

所以

%5Cbegin%7Baligned%7D%09%5Ccolor%7Bred%7D%7BS_%7B%5Cbigtriangleup%20PAB%7D%7D%26%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%7C%20PM%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20y_1-y_2%20%5Cright%7C%5C%5C%09%26%3D%5Csqrt%7B2%7D%5Ccdot%20%5Cleft(%20%5Cfrac%7B3%7D%7B4%7Dy_%7B0%7D%5E%7B2%7D-3x_0%20%5Cright)%20%5Ccdot%20%5Csqrt%7By_%7B0%7D%5E%7B2%7D-4x_0%7D%5C%5C%09%26%3D%5Cfrac%7B3%5Csqrt%7B2%7D%7D%7B4%7D%5Ccdot%20%5Csqrt%7B%5Cleft(%20y_%7B0%7D%5E%7B2%7D-4x_0%20%5Cright)%20%5E3%7D%5C%5C%09%26%3D%5Ccolor%7Bred%7D%7B6%5Csqrt%7B2%7D%5Ccdot%20%5Csqrt%7B%5Cleft(%20-x_%7B0%7D%5E%7B2%7D-x_0%2B1%20%5Cright)%20%5E3%7D%7D%5C%5C%5Cend%7Baligned%7D

因为x_0%5Cin%20%5Cleft%5B%20-1%2C0%20%5Cright)%20

所以-x_%7B0%7D%5E%7B2%7D-x_0%2B1%5Cin%20%5Cleft%5B%201%2C%5Cfrac%7B5%7D%7B4%7D%20%5Cright%5D%20

所以%5Ccolor%7Bred%7D%7BS_%7B%5Cbigtriangleup%20PAB%7D%5Cin%20%5Cleft%5B%206%5Csqrt%7B2%7D%2C%5Cfrac%7B15%5Csqrt%7B10%7D%7D%7B4%7D%20%5Cright%5D%20%7D%0A.

利用同构思想简化计算(2018浙江圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律