半月板撕裂类型分类——物理治疗师之影像学系列二
半月板是 C 形纤维软骨,具有凹的上表面和平坦的下侧,它们与股骨髁和胫骨平台的各自界面相匹配。外侧半月板呈对称的 C 形,而内侧半月板呈新月形 ,因为内侧半月板的后角总是大于前角。内侧半月板比外侧半月板具有更牢固的囊状附着。这使得内侧半月板的活动性降低,这也是内侧半月板更容易受伤的原因之一。

半月板撕裂还有两个病理学标准。这两个 MRI 标准是为诊断半月板撕裂而建立的。如果既往未对半月板进行过手术,则这些标准的诊断准确性超过 90% 。
⭐标准 1
标准 1 对应于半月板中的异常信号,表明至少在两个连续图像上发现撕裂。这对应于“双片接触规则”这一概念,其对内侧半月板撕裂的阳性预测值为 94%,对外侧半月板撕裂的阳性预测值为 96%。当在单个图像上看到内侧和外侧半月板撕裂时,阳性预测值分别为 55% 和36 % 。
异常信号强度应与关节面、半月板的上部或下部或尖端(自由端)接触。如果与关节面的接触出现在两个或多个连续图像中,则半月板撕裂的诊断准确性会提高。
⭐标准 2
标准 2 涉及半月板的形态。有必要全面了解 MRI 上半月板的正常解剖结构。在矢状面和冠状面上分析半月板病变。在这两个平面上显示半月板撕裂可降低误报率。然而,半月板囊交界处的几处撕裂可能只能在其中一个平面上看到。
病变描述:大小、形状和特征
半月板撕裂的多个图像应转换为 3D 图像。
半月板撕裂发生在两个主要平面上:垂直和水平。
半月板撕裂的三种基本形状是纵向的、径向的和水平的。半月板撕裂是部分厚度或全厚度(通过所有半月板组织)。
垂直的撕裂
垂直撕裂垂直于半月板的冠状面,可细分为外周纵向撕裂或径向撕裂。它们通常发生在年轻患者的创伤后 。
与上下半月板关节面相通的半月板组织垂直撕裂将半月板完全分为两部分(图 5).
垂直的撕裂
垂直撕裂垂直于半月板的冠状面,可细分为外周纵向撕裂或径向撕裂。它们通常发生在年轻患者的创伤后 。
与上下半月板关节面相通的半月板组织垂直撕裂将半月板完全分为两部分(图 1).

图 1
与上下半月板关节面相通的半月板组织垂直撕裂将半月板完全分为两部分。(a) 冠状位 T2 FSE Fat Sat MRI(箭头),(b) 矢状位 T2 FSE Fat Sat MRI(箭头),(c) 轴向 T2 FSE Fat Sat MRI(箭头),和 (d) 矢状位 T1 加权序列 MRI。(e) 三维图显示了半月板的垂直和纵向撕裂。(f) 三维图显示垂直撕裂。
这些撕裂会导致桶柄状撕裂的发展(图 2) 。在矢状位图像上可能看不到后角的垂直撕裂。

图 2
内侧半月板移位的桶柄状撕裂。(a) 冠状位 T2 FSE Fat Sat MRI 显示内侧半月板的移位桶柄碎片进入膝关节间切迹(箭头)。半月板体残留量小;(b) 冠状位 T2 FSE Fat Sat MRI 显示前内侧半月板移位的桶柄碎片(箭头);(c) 矢状位 T2 FSE Fat Sat MRI 显示“双后交叉韧带征”,桶柄状撕裂的移位碎片进入膝关节髁间窝;(d) 矢状 T1 加权序列 MRI(箭头);(e) 三维图显示内侧半月板移位的桶柄状撕裂;(f) 桶柄撕裂的关节镜视图;(g) 冠状位 T2 FSE Fat Sat MRI 显示内侧和外侧半月板的双移位桶柄碎片进入膝关节髁间窝(箭头);(h) 双桶柄撕裂的关节镜视图(箭头)。
径向(或横向)撕裂
径向撕裂是垂直于半月板主轴延伸的垂直撕裂。最常见的位置是半月板的中段(图 3).

图 3
涉及半月板周边的径向撕裂。(a) 冠状位 T2 FSE Fat Sat MRI 显示垂直高信号(箭头)延伸至内侧半月板后角的两个关节面;(b) 矢状位 T2 FSE Fat Sat MRI 显示径向撕裂裂征;(c) 显示涉及半月板周边的径向撕裂的三维图;(d) 径向撕裂的关节镜视图;(e) 冠状 T2 FSE Fat Sat MRI:由于大的径向撕裂(箭头),在冠状图像上未识别出内侧半月板的一部分;(f) 矢状 T2 FSE Fat Sat MRI 显示大的径向撕裂(箭头);(g) 轴向重建显示大的径向撕裂(箭头)从自由边缘延伸到后角;(h) 大的径向撕裂的关节镜视图。
这种撕裂从半月板的自由边缘开始,并向周边延伸一段不同的距离 。全厚度的径向撕裂从自由边缘向半月板(半月板壁)的外围延伸。
在 MRI 上很难看到小的撕裂。径向撕裂占 MRI 半月板病理误诊的很大一部分。这些撕裂的主要特征是它们涉及半月板表面的自由边缘。因此,如果半月板三角形的内点在一张或多张冠状图像上缺失或变钝,则应怀疑放射状半月板撕裂。这些撕裂最好在矢状位图像上看到。
斜向撕裂是一种径向撕裂(图 4).

图 4
斜向撕裂是一种径向撕裂:(a) 冠状位 T2 FSE Fat Sat MRI:内侧半月板体的斜向撕裂(箭头);(b) 冠状位 T2 FSE Fat Sat MRI:内侧半月板的斜水平撕裂(箭头);(c) 轴向 T2 FSE Fat Sat MRI 重建显示内侧半月板后部的斜撕裂(箭头);(d) 显示涉及半月板周边的斜向撕裂的三维图;(e) 关节镜视图显示内侧半月板斜撕裂。
它们从半月板的自由边缘开始,然后纵向继续(图 5),类似于纵向半月板撕裂,撕裂向周边延伸。

图 5
径向撕裂向周边延伸至纵向半月板撕裂;(a) 矢状 T2 FSE Fat Sat MRI(箭头);(b) 冠状位 T2 FSE Fat Sat MRI 显示向外周的纵向半月板撕裂(箭头);(c) 显示径向撕裂向周边延伸到纵向半月板撕裂向周边的三维图;(d) 关节镜视图显示内侧半月板撕裂。
这些斜向撕裂是最常见的半月板撕裂。外侧半月板后角的斜向径向撕裂通常与 ACL 撕裂有关 。
横向的撕裂
水平撕裂也称为卵裂或鱼嘴撕裂(图 6).

图6
水平撕裂也称为乳沟撕裂或鱼嘴撕裂。(a) 冠状位 T2 FSE MRI:内侧半月板体的水平撕裂(箭头);(b) 矢状 T2 FSE MRI(箭头);(c) 三维图。
他们将半月板分为上部和下部两个部分。它们通常开始于半月板下方 。虽然水平撕裂在 MRI 上可能看起来延伸到半月板深处,但在关节镜检查下它们可能只有几毫米深。当撕裂延伸到半月板周边,到达半月板滑膜边界时,就会形成半月板囊肿。大多数这些撕裂是退行性的,发生在患有骨关节炎的老年患者身上。
复杂的撕裂
复杂撕裂是纵向、径向和水平撕裂的组合。半月板可能同时存在多处撕裂,累及同一区域或数个区域的不同部分。一种常见的复杂撕裂包括水平撕裂和径向撕裂。它几乎总是退化的 。

GRE T2* 加权矢状位图像显示内侧半月板后角的复杂撕裂,具有水平(箭头)和纵向(箭头)分量。像这样复杂的撕裂很可能不稳定
半月板后角撕脱
在 MRI 上诊断半月板撕脱并不总是那么容易(图 7).

图 7
半月板后角撕脱。(a) T2 加权脂肪饱和图像显示内侧半月板后根完全撕裂(箭头);(b) 幽灵半月板征。在 T2 加权脂肪饱和序列(箭头)上,内侧半月板的后角已被三角形高信号强度取代;(c) 轴向重建显示大的后角撕脱(箭头),在 T2 加权脂肪饱和序列上具有高信号强度;(d) 内侧半月板的后角在矢状 T1(箭头)上未被识别;(g) 关节镜视图显示移位的内侧半月板根部撕裂;(h) 显示内侧半月板根部撕裂缝合的关节镜视图;(i) 在冠状 T2 加权脂肪饱和序列上识别外侧半月板的根部撕裂可能更加困难;(j) 幽灵半月板标志在矢状 T2 加权脂肪饱和序列(箭头)上不太显着;(k) 轴向重建显示后角撕脱(箭头)。
MRI 检测后角根部撕脱的诊断敏感性仅为 66.3%,不足以确定撕裂的类型。然而,最近的研究有助于提高这些眼泪的敏感性和特异性。提出了基于三个 MRI 征象的诊断评估:矢状面上的“幽灵半月板”(100% 检出率)、冠状面上的“垂直线性缺陷”(截断方面)(100%),以及轴向平面上的“径向线性缺陷”(94%)。
移位的半月板碎片
碎片或移位的半月板游离体发生在 9-24% 的半月板撕裂中。所有形式的撕裂都可能导致移位的碎片。MRI 诊断基于半月板缺失部分的撕裂和移位的半月板碎片的可视化 。
桶柄撕裂。
桶柄撕裂是由全厚度垂直-纵向撕裂引起的。在轴向图像上,被半月板壁分开的碎片(可能移位也可能不移位)看起来像一个桶柄。这些撕裂占所有半月板撕裂的 10% 。MRI对桶柄状撕裂的诊断准确性(图 6) 很好,在搜索双后交叉韧带标志(双 PCL 标志)时,可以在冠状位的髁间窝以及矢状位图像上清楚地看到移位的碎片。这些撕裂可归类为简单的垂直纵向撕裂,移位或不移位,从半月板中间部分撕裂或不撕裂(图 8),有时带有双或三桶把手。

图 8
内侧半月板移位的桶柄状撕裂,半月板中部撕裂。(a) 冠状 T2 FSE Fat Sat MRI:在髁间窝内看到大的半月板碎片(箭头);(b) 冠状位 T2 FSE Fat Sat MRI:皮瓣撕裂在身体表面撕裂下方水平移位,内侧半月板前角带有翻转碎片(箭头);(c) 矢状 T2 FSE Fat Sat MRI 显示复杂的撕裂和移位的碎片(箭头);(d) 轴位 T2 FSE Fat Sat MRI 重建显示移位的桶柄有 2 个皮瓣撕裂;(e) 三维图;(f) 关节镜视图显示破裂和移位的桶柄撕裂。
这些撕裂发生在内侧半月板的频率是外侧半月板的三倍,并且可能与 ACL 撕裂有关。
当半月板前角看起来异常大时,就会发生外侧半月板前角假性肥大。外侧半月板后角异常薄弱。这表明部分半月板已向前倾斜成桶柄状撕裂。
半月板碎片。水平半月板撕裂产生的半月板碎片有时会相对于半月板体移位,滑到半月板表面其余部分的上方或下方(图 9).

图 9
水平半月板撕裂产生的半月板碎片有时会相对于半月板体移位,滑到半月板表面其余部分的上方或下方。(a) 冠状 T2 FSE Fat Sat MRI 显示内侧半月板移位的碎片;(b) 在矢状 T2 FSE Fat Sat MRI 中,PCL 后方可见半月板碎片(箭头);(c) 轴向重建显示 T2 加权脂肪饱和序列上的半月板碎片(箭头);(d) 显示半月板碎片的三维图;(e) 关节镜下髁间窝内侧半月板撕裂移位;(f) 关节镜下胫骨平台后内侧内侧半月板移位撕裂的关节镜视图。
这些碎片通常涉及内侧半月板 。内侧半月板下方内侧移位的碎片很少见。当移位的碎片挡住胫骨平台的外围边缘和内侧交叉韧带的深部时,由于半月板表面似乎完好无损,因此在关节镜下看不到它。另一方面,它在日冕图像上更常见(图 10).

图 10来自水平半月板撕裂的半月板碎片移位到内侧或外侧半月板下方。移位的骨折块阻塞了胫骨平台的外围边缘和 MCL 或 LCL 的深部。(a) 冠状位 T2 FSE Fat Sat MRI 显示内侧半月板体的水平下表面移位移位,沿自体半月板下表面有一个翻转的碎片(箭头)并延伸到 MCL 下方;(b) 矢状位 T2 FSE Fat Sat MRI 显示内侧半月板移位碎片(箭头);(c) 轴向重建显示在 T2 加权脂肪饱和序列上 MCL 下的翻转片段(箭头);(d) 显示内侧半月板移位撕裂的三维图;(e) 半月板下内侧半月板移位撕裂的关节镜视图;(f) 关节镜下半月板下方内侧半月板撕裂在关节内病变中减少;(g) 冠状位 T2 FSE Fat Sat MRI 显示外侧半月板移位碎片(箭头);(h) 矢状 T2 FSE Fat Sat MRI 显示 LCL 下方的外侧半月板的大碎片;(i) 在冠状位 T2 FSE Fat Sat MRI 中,复杂的撕裂伴有移位的碎片(箭头)进入上隐窝;(j) 内侧半月板移位撕裂进入上隐窝的关节镜视图。
垂直撕裂引起的小半月板碎片向上或向下移位不太常见。
半月板囊分离
半月板囊分离是半月板滑膜连接处的半月板周边撕裂。这通常涉及内侧半月板后角的囊状附着。MRI 在诊断半月板囊分离方面不如关节镜可靠,阳性预测值:内侧半月板的 PPV 为 9%,外侧半月板的 PPV 为 13% 。
半月板囊分离通常与膝关节韧带撕裂有关。由于半月板周围丰富的血管化,这些实体可以自发愈合,这取决于与结缔组织血管化区域相关的分离部位。
半月板囊肿
半月板囊肿更常发生在内侧间室 。内侧半月板旁囊肿的症状更为常见,因为它们位于内侧副韧带附近。发病率在 2% 到 8% 之间,这些囊肿通常见于 20 到 40 岁的男性。内侧半月板囊肿通常位于后角 ,而外侧半月板囊肿通常位于半月板前角 (图 11).

图 11
外侧半月板囊肿:(a) 外侧半月板囊肿通常位于半月板前角(冠状 T2 FSE MRI 序列);(b) 轴向 T2 FSE Fat Sat MRI 重建显示外侧半月板囊肿(箭头)。
撕裂通常是水平的,并延伸到半月板的周边,使滑液从关节渗漏到半月板旁组织中,形成半月板囊肿。有时囊肿可局限于半月板。这称为半月板内囊肿。
与其他半月板位置的囊肿相比,位于半月板外侧前角附近的半月板旁囊肿发生潜在半月板撕裂的风险较小 [ 67 ]。重要的是要认识到半月板囊肿和眼泪之间的联系。如果在不治疗撕裂的情况下治疗囊肿,则囊肿可能会复发。
半月板挤压
在有临床症状的膝关节骨关节炎的老年患者中,已经报道了胫股关节间隙的半月板挤压。在该组中,半月板挤压先于退行性关节病 。半月板挤压后,胫骨和股骨软骨的直接撞击会增加骨关节炎的进展。
胫股软骨损伤和腿部排列不齐会增加半月板挤压的风险。排列不当会增加半月板表面的负荷,从而导致挤压。内翻和外翻畸形分别与内侧和外侧半月板挤压有关 。

半月板挤压
术后半月板和 MRI
对于接受过部分半月板切除术或半月板修复的患者,复发性撕裂的诊断更为复杂,建议使用冠状和矢状 T2-W FSE Fat-Sat 序列。在缝合的半月板中,缝合区中持续存在的线性高信号使得难以对复发性撕裂和正在愈合的分离进行鉴别诊断 。如果半月板表面切除超过 25% 或半月板修复,大多数作者建议使用 MR 关节造影. 半月板切除术后,剩余的半月板可以呈现不均匀的信号和不规则的边界,而不是病理性的。MR 关节造影对复发性半月板撕裂的诊断准确率为 88%,而常规 MRI 为 66%。在广泛的半月板切除术中,MR 关节造影比简单的 MRI 更准确。Magee最近表明,联合使用 MR 和 MR 关节造影成像在半月板撕裂的诊断中具有 98% 的敏感性和 75% 的特异性。
盘状半月板
区分真正的盘状半月板和比正常稍大的半月板可能很困难(图 12).

图 12
盘状外侧半月板。(a) 冠状 T2 FSE Fat Sat MRI 显示半月板增大。与正常外观的三角形内侧半月板体相比,外侧半月板体(箭头)增大并且具有更板状的结构;(b) 外侧半月板的矢状 T2 FSE Fat Sat 图像表明,领结外观在更中心的切片上持续存在,而不是转化为 2 个相对的三角形;(c) 显示盘状外侧半月板的三维图;(d) 盘状外侧半月板的关节镜视图;(e) 盘状外侧半月板后部囊性变性;(f) 盘状外侧半月板前部囊性变性。
盘状半月板的三种类型分为完全性、不完全性和 Wrisberg 盘状半月板。胫骨平台覆盖的量在完整和不完整的盘状半月板之间有所不同。Wrisberg 变体是最不常见的(它缺乏正常的冠状后韧带和囊膜附着)。该韧带是活动的并且可以导致半脱位 。
在矢状位图像上,盘状半月板在三个连续的矢状位图像上具有加厚的蝴蝶结外观。在髁间窝附近的几个 MRI 图像上可以看到前角和正常半月板。对于完整的盘状半月板,这种差异是看不到的。正常的半月板从外围向中心迅速变窄。在 2 个相邻的 5 mm 厚图像上存在相同或几乎相同高度的半月板是盘状半月板的标志 。
冠状 MRI 图像通过显示半月板增大对盘状半月板的诊断更敏感。不对称的盘状半月板在冠状位图像上可以具有增大的半月板体,但在矢状位图像上具有正常的后角和前角,强调了冠状位图像的必要性。盘状半月板可通过 MRI 准确诊断 (PPV 92%) 。
容易误诊❌❌❌:

髌下皱襞

半月板股骨韧带 (MFL)

膝横韧带

软骨 钙质沉着症(CPPD)

腘窝积液

半月板有过手术史
⭐⭐⭐鉴别诊断:

盘状半月板

半月板挫伤

半月板退化性变化

半月板荷叶边(不常见)

半月板小骨(不常见)

环形半月板(不常见)
结论:
MRI 是诊断半月板撕裂最准确、侵入性最小的工具。这种膝关节成像技术是分析半月板病变的“金标准”。它允许确认和表征半月板病变。因此,诊断性关节镜检查在膝关节半月板损伤的分析中没有立足之地。然而,治疗性关节镜检查是膝关节半月板病变的一种可行治疗方法。本文中描述的不同半月板病变的完美知识使临床医生能够专门针对每种病变调整治疗方法、内科或外科手术。具有各向同性分辨率的新型三维 3D MRI 应有助于改进半月板撕裂的诊断。
关于我们
SPTA致力于通过物理治疗师的实践,教育和研究,提高社会对物理治疗在国家医疗保健系统中作用的认识和理解,从而践行物理治疗行业愿景,改善人类健康和生活质量。
想要了解更多关于诊疗服务、健康科普以及术后恢复,请持续关注我们

向作者咨询
微信号 | HL1032904229
公众号|PT 黄鲁
自媒体|物理治疗师黄鲁
相关文献:
https://radiopaedia.org/articles/meniscal-tear?lang=us
De Maeseneer M., Lenchik L., Starok M., Pedowitz R., Trudell D., Resnick D. Normal and abnormal medial meniscocapsular structures: MR imaging and sonography in cadavers. American Journal of Roentgenology. 1998;171(4):969–976. doi: 10.2214/ajr.171.4.9762977. [PubMed] [CrossRef] [Google Scholar]
2. De Flaviis L., Scaglione P., Nessi R., Albisetti W. Ultrasound in degenerative cystic meniscal disease of the knee. Skeletal Radiology. 1990;19(6):441–445. doi: 10.1007/bf00241801. [PubMed] [CrossRef] [Google Scholar]
3. Casser H.-R., Sohn C., Kiekenbeck A. Current evaluation of sonography of the meniscus. Results of a comparative study of sonographic and arthroscopic findings. Archives of Orthopaedic and Trauma Surgery. 1990;109(3):150–154. doi: 10.1007/BF00440576. [PubMed] [CrossRef] [Google Scholar]
4. Gerngross H., Sohn C. Ultrasound scanning for the diagnosis of meniscal lesions of the knee joint. Arthroscopy. 1992;8(1):105–110. doi: 10.1016/0749-8063(92)90143-y. [PubMed] [CrossRef] [Google Scholar]
5. Rutten M. J. C. M., Collins J. M. P., Van Kampen A., Jager G. J. Meniscal cysts: detection with high-resolution sonography. American Journal of Roentgenology. 1998;171(2):491–496. doi: 10.2214/ajr.171.2.9694482. [PubMed] [CrossRef] [Google Scholar]
6. Dumas J. M., Edde D. J. Meniscal abnormalities: prospective correlation of double-contrast arthrography and arthroscopy. Radiology. 1986;160(2):453–456. doi: 10.1148/radiology.160.2.3726126. [PubMed] [CrossRef] [Google Scholar]
7. Gillies H., Seligson D. Precision in the diagnosis of meniscal lesions: a comparison of clinical evaluation, arthrography, and arthroscopy. The Journal of Bone & Joint Surgery—American Volume. 1979;61(3):343–346. [PubMed] [Google Scholar]
8. Gückel C., Jundt G., Schnabel K., Gächter A. Spin-echo and 3D gradient-echo imaging of the knee joint: a clinical and histopathological comparison. European Journal of Radiology. 1995;21(1):25–33. doi: 10.1016/0720-048x(95)00681-f. [PubMed] [CrossRef] [Google Scholar]
9. Pelousse F., Olette J. Arthroscanner of the knee: current indication, examination of the femoro-tibial compartment. Comparative study with classical simple-contrast media arthrography. Journal Belge de Radiologie. 1993;76(6):377–381. [PubMed] [Google Scholar]
10. De Filippo M., Bertellini A., Pogliacomi F., et al. Multidetector computed tomography arthrography of the knee: diagnostic accuracy and indications. European Journal of Radiology. 2009;70(2):342–351. doi: 10.1016/j.ejrad.2008.01.034. [PubMed] [CrossRef] [Google Scholar]
11. Harrison B. K., Abell B. E., Gibson T. W. The thessaly test for detection of meniscal tears: validation of a new physical examination technique for primary care medicine. Clinical Journal of Sport Medicine. 2009;19(1):9–12. doi: 10.1097/jsm.0b013e31818f1689. [PubMed] [CrossRef] [Google Scholar]
12. Nguyen J. C., De Smet A. A., Graf B. K., Rosas H. G. MR imaging-based diagnosis and classification of meniscal tears. Radiographics. 2014;34(4):981–999. doi: 10.1148/rg.344125202. [PubMed] [CrossRef] [Google Scholar]
13. Rubin D. A., Paletta G. A., Jr. Current concepts and controversies in meniscal imaging. Magnetic Resonance Imaging Clinics of North America. 2000;8(2):243–270. [PubMed] [Google Scholar]
14. Matava M. J., Eck K., Totty W., Wright R. W., Shively R. A. Magnetic resonance imaging as a tool to predict meniscal reparability. The American Journal of Sports Medicine. 1999;27(4):436–443. [PubMed] [Google Scholar]
15. Rubin D. A., Kettering J. M., Towers J. D., Britton C. A. MR imaging of knees having isolated and combined ligament injuries. American Journal of Roentgenology. 1998;170(5):1207–1213. doi: 10.2214/ajr.170.5.9574586. [PubMed] [CrossRef] [Google Scholar]
16. Spiers A. S. D., Meagher T., Ostlere S. J., Wilson D. J., Dodd C. A. F. Can MRI of the knee affect arthroscopic practice? A prospective study of 58 patients. The Journal of Bone & Joint Surgery—British Volume. 1993;75(1):49–52. [PubMed] [Google Scholar]
17. Suh J. S., Jeong E. K., Shin K. H., et al. Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies. American Journal of Roentgenology. 1998;171(5):1207–1213. doi: 10.2214/ajr.171.5.9798849. [PubMed] [CrossRef] [Google Scholar]
18. Cotten A., Delfaut E., Demondion X., et al. MR imaging of the knee at 0.2 and 1.5 T: correlation with surgery. American Journal of Roentgenology. 2000;174(4):1093–1097. doi: 10.2214/ajr.174.4.1741093. [PubMed] [CrossRef] [Google Scholar]
19. Subhas N., Kao A., Freire M., Polster J. M., Obuchowski N. A., Winalski C. S. MRI of the knee ligaments and menisci: comparison of isotropic-resolution 3D and conventional 2D fast spin-echo sequences at 3 T. American Journal of Roentgenology. 2011;197(2):442–450. doi: 10.2214/ajr.10.5709. [PubMed] [CrossRef] [Google Scholar]
20. Thornton D. D., Rubin D. A. Magnetic resonance imaging of the knee menisci. Seminars in Roentgenology. 2000;35(3):217–230. doi: 10.1053/00/sroe.2000.7331. [PubMed] [CrossRef] [Google Scholar]
21. Chen H. N., Dong Q. R., Wang Y. Accuracy of low-field MRI on meniscal tears. Genetics and Molecular Research. 2014;13(2):4267–4271. doi: 10.4238/2014.june.9.12. [PubMed] [CrossRef] [Google Scholar]
22. De Smet A. A., Asinger D. A., Johnson R. L. Abnormal superior popliteomeniscal fascicle and posterior pericapsular edema: indirect MR imaging signs of a lateral meniscal tear. American Journal of Roentgenology. 2001;176(1):63–66. doi: 10.2214/ajr.176.1.1760063. [PubMed] [CrossRef] [Google Scholar]
23. De Smet A. A., Tuite M. J., Norris M. A., Swan J. S. MR diagnosis of meniscal tears: analysis of causes of errors. American Journal of Roentgenology. 1994;163(6):1419–1423. doi: 10.2214/ajr.163.6.7992739. [PubMed] [CrossRef] [Google Scholar]
24. Elvenes J., Jerome C. P., Reikerås O., Johansen O. Magnetic resonance imaging as a screening procedure to avoid arthroscopy for meniscal tears. Archives of Orthopaedic and Trauma Surgery. 2000;120(1-2):14–16. [PubMed] [Google Scholar]
25. Jaddue D. A. K., Tawfiq F. H., Sayed-Noor A. S. The utility of clinical examination in the diagnosis of medial meniscus injury in comparison with arthroscopic findings. European Journal of Orthopaedic Surgery and Traumatology. 2010;20(5):389–392. doi: 10.1007/s00590-009-0582-z. [CrossRef] [Google Scholar]
26. Justice W. W., Quinn S. F. Error patterns in the MR imaging evaluation of menisci of the knee. Radiology. 1995;196(3):617–621. doi: 10.1148/radiology.196.3.7644620. [PubMed] [CrossRef] [Google Scholar]
27. Nickinson R., Darrah C., Donell S. Accuracy of clinical diagnosis in patients undergoing knee arthroscopy. International Orthopaedics. 2010;34(1):39–44. doi: 10.1007/s00264-009-0760-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
28. Rayan F., Bhonsle S., Shukla D. D. Clinical, MRI, and arthroscopic correlation in meniscal and anterior cruciate ligament injuries. International Orthopaedics. 2009;33(1):129–132. doi: 10.1007/s00264-008-0520-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
29. Ryzewicz M., Peterson B., Siparsky P. N., Bartz R. L. The diagnosis of meniscus tears: the role of MRI and clinical examination. Clinical Orthopaedics and Related Research. 2007;455:123–133. doi: 10.1097/blo.0b013e31802fb9f3. [PubMed] [CrossRef] [Google Scholar]
30. Sanders T. G., Miller M. D. A systematic approach to magnetic resonance imaging interpretation of sports medicine injuries of the knee. The American Journal of Sports Medicine. 2005;33(1):131–148. doi: 10.1177/0363546504272374. [PubMed] [CrossRef] [Google Scholar]
31. Oei E. H. G., Nikken J. J., Verstijnen A. C. M., Ginai A. Z., Hunink M. G. M. MR imaging of the menisci and cruciate ligaments: a systematic review. Radiology. 2003;226(3):837–848. doi: 10.1148/radiol.2263011892. [PubMed] [CrossRef] [Google Scholar]
32. Mackenzie R., Dixon A. K., Keene G. S., Hollingworth W., Lomas D. J., Villar R. N. Magnetic imaging of the knee: assessment of effectiveness. Clinical Radiology. 1996;51:245–250. [PubMed] [Google Scholar]
33. Watanabe A. T., Carter B. C., Teitelbaum G. P., Seeger L. L., Bradley W. G., Jr. Normal variations in MR imaging of the knee: appearance and frequency. American Journal of Roentgenology. 1989;153(2):341–344. doi: 10.2214/ajr.153.2.341. [PubMed] [CrossRef] [Google Scholar]
34. Herman L. J., Beltran J. Pitfalls in MR imaging of the knee. Radiology. 1988;167(3):775–781. doi: 10.1148/radiology.167.3.3363139. [PubMed] [CrossRef] [Google Scholar]
35. Fithian D. C., Kelly M. A., Mow V. C. Material properties and structure-function relationships in the menisci. Clinical Orthopaedics and Related Research. 1990;252:19–31. [PubMed] [Google Scholar]
36. Engelhardt L. V., Schmitz A., Pennekamp P. H., Schild H. H., Wirtz D. C., Falkenhausen F. Diagnostics of degenerative meniscal tears at 3-Tesla MRI compared to arthroscopy as reference standard. Archives of Orthopaedic and Trauma Surgery. 2008;128(5):451–456. doi: 10.1007/s00402-007-0485-6. [PubMed] [CrossRef] [Google Scholar]
37. Magee T., Williams D. 3.0-T MRI of meniscal tears. American Journal of Roentgenology. 2006;187(2):371–375. doi: 10.2214/ajr.05.0487. [PubMed] [CrossRef] [Google Scholar]
38. Wong S., Steinbach L., Zhao J., Stehling C., Ma C. B., Link T. M. Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skeletal Radiology. 2009;38(8):761–769. doi: 10.1007/s00256-009-0683-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
39. Van Dyck P., Vanhoenacker F. M., Lambrecht V., et al. Prospective comparison of 1.5 and 3.0-T MRI for evaluating the knee menisci and ACL. The Journal of Bone & Joint Surgery—American Volume. 2013;95(10):916–924. doi: 10.2106/jbjs.l.01195. [PubMed] [CrossRef] [Google Scholar]
40. Carrino J. A., Schweitzer M. E. Imaging of sports-related knee injuries. Radiologic Clinics of North America. 2002;40(2):181–202. doi: 10.1016/s0033-8389(02)00004-0. [PubMed] [CrossRef] [Google Scholar]
41. Antonio G. E., Griffith J. F., Yeung D. K. W. Small-field-of-view MRI of the knee and ankle. American Journal of Roentgenology. 2004;183(1):24–28. doi: 10.2214/ajr.183.1.1830024. [PubMed] [CrossRef] [Google Scholar]
42. Quinn S. F., Brown T. R., Szumowski J. Menisci of the knee: radial MR imaging correlated with arthroscopy in 259 patients. Radiology. 1992;185(2):577–580. doi: 10.1148/radiology.185.2.1410376. [PubMed] [CrossRef] [Google Scholar]
43. Cheung L. P., Li K. C. P., Hollett M. D., Bergman A. G., Herfkens R. J. Meniscal tears of the knee: accuracy of detection with fast spin-echo MR imaging and arthroscopic correlation in 293 patients. Radiology. 1997;203(2):508–512. doi: 10.1148/radiology.203.2.9114113. [PubMed] [CrossRef] [Google Scholar]
44. Escobedo E. M., Hunter J. C., Zink-Brody G. C., Wilson A. J., Harrison S. D., Fisher D. J. Usefulness of turbo spin-echo MR imaging in the evaluation of meniscal tears: comparison with a conventional spin-echo sequence. American Journal of Roentgenology. 1996;167(5):1223–1227. doi: 10.2214/ajr.167.5.8911185. [PubMed] [CrossRef] [Google Scholar]
45. Stoller D. W., Martin C., Crues J. V., III, Kaplan L., Mink J. H. Meniscal tears: pathologic correlation with MR imaging. Radiology. 1987;163(3):731–735. doi: 10.1148/radiology.163.3.3575724. [PubMed] [CrossRef] [Google Scholar]
46. Crues J. V., Stoller D. W. The menisci. In: Mink J. H., Reicher M. A., Crues J. V., et al., editors. MRI of the Knee. 2nd. New York, NY, USA: Raven; 1993. pp. 91–140. [Google Scholar]
47. Bikkina R. S., Tujo C. A., Schraner A. B., Major N. M. The ‘floating’ meniscus: MRI in knee trauma and implications for surgery. American Journal of Roentgenology. 2005;184(1):200–204. doi: 10.2214/ajr.184.1.01840200. [PubMed] [CrossRef] [Google Scholar]
48. Mackenzie R., Palmer C. R., Lomas D. J., Dixon A. K. Magnetic resonance imaging of the knee: diagnostic performance studies. Clinical Radiology. 1996;51(4):251–257. [PubMed] [Google Scholar]
49. McCauley T. R., Jee W.-H., Galloway M. T., Lynch K., Jokl P. Grade 2C signal in the mensicus on MR imaging of the knee. American Journal of Roentgenology. 2002;179(3):645–648. doi: 10.2214/ajr.179.3.1790645. [PubMed] [CrossRef] [Google Scholar]
50. Crues J. V., III, Mink J., Levy T. L., Lotysch M., Stoller D. W. Meniscal tears of the knee: accuracy of MR imaging. Radiology. 1987;164(2):445–448. doi: 10.1148/radiology.164.2.3602385. [PubMed] [CrossRef] [Google Scholar]
51. De Smet A. A., Tuite M. J. Use of the ‘two-slice-touch’ rule for the MRI diagnosis of meniscal tears. American Journal of Roentgenology. 2006;187(4):911–914. doi: 10.2214/ajr.05.1354. [PubMed] [CrossRef] [Google Scholar]
52. Baxamusa T. H., Galloway M. T. Irreducible knee dislocations secondary to interposed menisci. American Journal of Orthopedics. 2001;30(2):141–143. [PubMed] [Google Scholar]
53. Laundre B. J., Collins M. S., Bond J. R., Dahm D. L., Stuart M. J., Mandrekar J. N. MRI accuracy for tears of the posterior horn of the lateral meniscus in patients with acute anterior cruciate ligament injury and the clinical relevance of missed tears. American Journal of Roentgenology. 2009;193(2):515–523. doi: 10.2214/AJR.08.2146. [PubMed] [CrossRef] [Google Scholar]
54. Bin S.-I., Kim J.-M., Shin S.-J. Radial tears of the posterior horn of the medial meniscus. Arthroscopy. 2004;20(4):373–378. doi: 10.1016/j.arthro.2004.01.004. [PubMed] [CrossRef] [Google Scholar]
55. Choi S.-H., Bae S., Ji S. K., Chang M. J. The MRI findings of meniscal root tear of the medial meniscus: emphasis on coronal, sagittal and axial images. Knee Surgery, Sports Traumatology, Arthroscopy. 2012;20(10):2098–2103. doi: 10.1007/s00167-011-1794-4. [PubMed] [CrossRef] [Google Scholar]
56. Choi C.-J., Choi Y.-J., Lee J.-J., Choi C.-H. Magnetic resonance imaging evidence of meniscal extrusion in medial meniscus posterior root tear. Arthroscopy. 2010;26(12):1602–1606. doi: 10.1016/j.arthro.2010.05.004. [PubMed] [CrossRef] [Google Scholar]
57. De Smet A. A., Blankenbaker D. G., Kijowski R., Graf B. K., Shinki K. MR diagnosis of posterior root tears of the lateral meniscus using arthroscopy as the reference standard. American Journal of Roentgenology. 2009;192(2):480–486. doi: 10.2214/ajr.08.1300. [PubMed] [CrossRef] [Google Scholar]
58. Lee S. Y., Jee W.-H., Kim J.-M. Radial tear of the medial meniscal root: reliability and accuracy of MRI for diagnosis. American Journal of Roentgenology. 2008;191(1):81–85. doi: 10.2214/ajr.07.2945. [PubMed] [CrossRef] [Google Scholar]
59. Lee Y. G., Shim J.-C., Choi Y. S., Kim J. G., Lee G. J., Kim H. K. Magnetic resonance imaging findings of surgically proven medial meniscus root tear: tear configuration and associated knee abnormalities. Journal of Computer Assisted Tomography. 2008;32(3):452–457. doi: 10.1097/rct.0b013e31812f4eb0. [PubMed] [CrossRef] [Google Scholar]
60. Lecas L. K., Helms C. A., Kosarek F. J., Garret W. E. Inferiorly displaced flap tears of the medial meniscus: MR appearance and clinical significance. American Journal of Roentgenology. 2000;174(1):161–164. doi: 10.2214/ajr.174.1.1740161. [PubMed] [CrossRef] [Google Scholar]
61. Helms C. A. The meniscus: recent advances in MR imaging of the knee. American Journal of Roentgenology. 2002;179(5):1115–1122. doi: 10.2214/ajr.179.5.1791115. [PubMed] [CrossRef] [Google Scholar]
62. Helms C. A., Laorr A., Cannon W. D., Jr. The absent bow tie sign in bucket-handle tears of the menisci in the knee. American Journal of Roentgenology. 1998;170(1):57–61. doi: 10.2214/ajr.170.1.9423600. [PubMed] [CrossRef] [Google Scholar]
63. Türkmen F., Korucu İ. H., Sever C., Demirayak M., Goncü G., Toker S. Free medial meniscal fragment which mimics the dislocated bucket-handle tear on MRI. Case Reports in Orthopedics. 2014;2014:3. doi: 10.1155/2014/647491.647491 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
64. Weiss K. L., Morehouse H. T., Levy I. M. Sagittal MR images of the knee: a low-signal band parallel to the posterior cruciate ligament caused by a displaced bucket-handle tear. American Journal of Roentgenology. 1991;156(1):117–119. doi: 10.2214/ajr.156.1.1898543. [PubMed] [CrossRef] [Google Scholar]
65. Rubin D. A., Britton C. A., Towers J. D., Harner C. D. Are MR imaging signs of meniscocapsular separation valid? Radiology. 1996;201(3):829–836. doi: 10.1148/radiology.201.3.8939239. [PubMed] [CrossRef] [Google Scholar]
66. Campbell S. E., Sanders T. G., Morrison W. B. MR imaging of meniscal cysts: incidence, location, and clinical significance. American Journal of Roentgenology. 2001;177(2):409–413. doi: 10.2214/ajr.177.2.1770409. [PubMed] [CrossRef] [Google Scholar]
67. De Smet A. A., Graf B. K., del Rio A. M. Association of parameniscal cysts with underlying meniscal tears as identified on MRI and arthroscopy. American Journal of Roentgenology. 2011;196(2):W180–W186. doi: 10.2214/ajr.10.4754. [PubMed] [CrossRef] [Google Scholar]
68. Rennie W. J., Finlay D. B. L. Meniscal extrusion in young athletes: associated knee joint abnormalities. American Journal of Roentgenology. 2006;186(3):791–794. doi: 10.2214/ajr.04.1181. [PubMed] [CrossRef] [Google Scholar]
69. Brostein R., Kirk P., Hurley J. The usefulness of MRI in evaluating menisci after meniscus repair. Orthopedics. 1992;15(2):149–152. [PubMed] [Google Scholar]
70. Magee T. Accuracy of 3-Tesla MR and MR arthrography in diagnosis of meniscal retear in the post-operative knee. Skeletal Radiology. 2014;43(8):1057–1064. doi: 10.1007/s00256-014-1895-5. [PubMed] [CrossRef] [Google Scholar]
71. Singh K., Helms C. A., Jacobs M. T., Higgins L. D. MRI appearance of Wrisberg variant of discoid lateral meniscus. American Journal of Roentgenology. 2006;187(2):384–387. doi: 10.2214/AJR.04.1785. [PubMed] [CrossRef] [Google Scholar]
72. Ryu K. N., Kim I. S., Kim E. J., et al. MR imaging of tears of discoid lateral menisci. American Journal of Roentgenology. 1998;171(4):963–967. doi: 10.2214/ajr.171.4.9762976. [PubMed] [CrossRef] [Google Scholar]
73. Duc S. R., Pfirrmann C. W. A., Koch P. P., Zanetti M., Hodler J. Internal knee derangement assessed with 3-minute three-dimensional isovoxel true FISP MR sequence: preliminary study. Radiology. 2008;246(2):526–535. doi: 10.1148/radiol.2462062092. [PubMed] [CrossRef] [Google Scholar]
74. Harms S. E., Flamig D. P., Fisher C. F., Fulmer J. M. New method for fast MR imaging of the knee. Radiology. 1989;173(3):743–750. doi: 10.1148/radiology.173.3.2813780. [PubMed] [CrossRef] [Google Scholar]
75. Lu A., Brodsky E., Grist T. M., Block W. F. Rapid fat-suppressed isotropic steady-state free precession imaging using true 3D multiple-half-echo projection reconstruction. Magnetic Resonance in Medicine. 2005;53(3):692–699. doi: 10.1002/mrm.20389. [PubMed] [CrossRef] [Google Scholar]
76. Wieslander S. B., Rappeport E. D., Lausten G. S., Thomsen H. S. Multiplanar reconstruction in MR imaging of the knee: comparison with standard sagittal and coronal images. Acta Radiologica. 1998;39(2):116–119. [PubMed] [Google Scholar]
77. Kijowski R., Blankenbaker D. G., Klaers J. L., Shinki K., De Smet A. A., Block W. F. Vastly undersampled isotropic projection steady-state free precession imaging of the knee: diagnostic performance compared with conventional MR. Radiology. 2009;251(1):185–194. doi: 10.1148/radiol.2511081133. [PubMed] [CrossRef] [Google Scholar]
78. Solomon S. L., Totty W. G., Lee J. K. T. MR imaging of the knee: comparison of three-dimensional FISP and two-dimensional spin-echo pulse sequences. Radiology. 1989;173(3):739–742. doi: 10.1148/radiology.173.3.2813779. [PubMed] [CrossRef] [Google Scholar]
79. Lefevre N., Naouri J. F., Bohu Y., Klouche S., Herman S. Partial tears of the anterior cruciate ligament: diagnostic performance of isotropic three-dimensional fast spin echo (3D-FSE-Cube) MRI. European Journal of Orthopaedic Surgery and Traumatology. 2014;24(1):85–91. doi: 10.1007/s00590-012-1135-4. [PubMed] [CrossRef] [Google Scholar]
80. Heron C. W., Calvert P. T. Three-dimensional gradient-echo MR imaging of the knee: comparison with arthroscopy in 100 patients. Radiology. 1992;183(3):839–844. doi: 10.1148/radiology.183.3.1584944. [PubMed] [CrossRef] [Google Scholar]
81. Yoshioka H., Stevens K., Hargreaves B. A., et al. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. Journal of Magnetic Resonance Imaging. 2004;20(5):857–864. doi: 10.1002/jmri.20193. [PubMed] [CrossRef] [Google Scholar]
82. Busse R. F., Hariharan H., Vu A., Brittain J. H. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magnetic Resonance in Medicine. 2006;55(5):1030–1037. doi: 10.1002/mrm.20863. [PubMed] [CrossRef] [Google Scholar]
83. Gold G. E., Busse R. F., Beehler C., et al. Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA): initial experience. American Journal of Roentgenology. 2007;188(5):1287–1293. doi: 10.2214/ajr.06.1208. [PubMed] [CrossRef] [Google Scholar]
84. Stevens K. J., Busse R. F., Han E., et al. Ankle: isotropic MR imaging with 3D-FSE-cube-initial experience in healthy volunteers. Radiology. 2008;249(3):1026–1033. doi: 10.1148/radiol.2493080227. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
85. Sonin A. H., Pensy R. A., Mulligan M. E., Hatem S. Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. American Journal of Roentgenology. 2002;179(5):1159–1166. doi: 10.2214/ajr.179.5.1791159. [PubMed] [CrossRef] [Google Scholar]
86. Jung J. Y., Yoon Y. C., Choi S.-H., Kwon J. W., Yoo J., Choe B.-K. Three-dimensional isotropic shoulder MR arthrography: comparison with two-dimensional MR arthrography for the diagnosis of labral lesions at 3.0 T. Radiology. 2009;250(2):498–505. doi: 10.1148/radiol.2493071548. [PubMed] [CrossRef] [Google Scholar]
87. Kijowski R., Davis K. W., Woods M. A., et al. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging—diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology. 2009;252(2):486–495. doi: 10.1148/radiol.2523090028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
88. Ristow O., Steinbach L., Sabo G., et al. Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee: image quality and diagnostic performance. European Radiology. 2009;19(5):1263–1272. doi: 10.1007/s00330-008-1260-y. [PubMed] [CrossRef] [Google Scholar]
89. Glückert K., Kladny B., Blank-Schäl A., Hofmann G. MRI of the knee joint with a 3-D gradient echo sequence. Equivalent to diagnostic arthroscopy? Archives of Orthopaedic and Trauma Surgery. 1992;112(1):5–14. doi: 10.1007/bf00431036. [PubMed] [CrossRef] [Google Scholar]
90. Ohishi T., Takahashi M., Abe M., Tsuchikawa T., Mori M., Nagano A. The use of axial reconstructed images from three-dimensional MRI datasets for morphological diagnosis of meniscal tears of the knee. Archives of Orthopaedic and Trauma Surgery. 2005;125(9):622–627. doi: 10.1007/s00402-004-0792-0. [PubMed] [CrossRef] [Google Scholar]
