LLC 的工作原理(第 II 部分):LLC 变换器设计考量

概述
LLC 变换器的设计涉及众多的设计决策与关键参数,而且很多因素相互关联。任何一个设计选择都可能影响系统中的许多其他参数。LLC 谐振腔的设计是其中最大的挑战,因为它决定了变换器响应负载、频率和电压变化的能力。因此,设计人员必须正确定义变换器负载和频率的工作范围,因为这些值会影响谐振腔的值与参数来。
本系列的两篇文章将讨论 LLC变换器设计的关键考量因素。 第I部分探讨了各种电源开关拓扑和 LLC 谐振腔的特性。本文为第II部分,将介绍 LLC 变换器设计中的重要参数,包括增益、负载、频率和电感。
LLC变换器增益
影响LLC 变换器增益的两个模块是谐振腔和变压器。谐振腔增益是可变的,具体取决于负载 (Q)、归一化频率 (fN)和归一化电感 (LN)。变换器的增益响应 (MG为Q, LN和fN的函数,通过公式 (1) 来计算:
$$M_G(Q,L_N,f_N) = \frac {V_{OUT(AC)}}{V_{IN(AC)}} = \frac {f_N^2 \times (L_N-1)} {(f_N^2 -1)^2 + (f_N^2 \times (f_N^2 -1) \times (L_N-1)^2 \times Q^2}$$
变压器增益则由变压器原边线圈的匝数与副边线圈的匝数之比定义。该比率由变压器的物理结构定义,所以一旦变换器开始工作,就不能轻易改变。
图 1 显示了 LLC 变换器的增益路径。

图 2 显示了带变压器的 LLC 谐振腔原理图。

变换器的总增益 (VOUT / VIN) 为两个增益的乘积,可通过公式 (2) 来估算:
$$\frac {V_{OUT}}{V_{IN}} = M_G \times \frac {1}{n}$$
其中 n 为变压器的匝数比,MG则为 LLC 谐振腔增益。
理想情况下,谐振腔不会放大或衰减信号,而是滤除谐波。这意味着谐振腔的标称增益应为 1,并且变压器应是改变输出电压电平的唯一阶段。
但实际上,LLC 变换器常用于 AC/DC变换器。AC/DC 变换器通常由一个 AC/DC + PFC 转换级和一个 LLC DC/DC 变换器组成,用于将电压降到所需的水平(参见图 3)。

AC/DC + PFC 级将 AC 输入电压 (VIN) (例如来自 AC 电源的功率)转换为稳定的 DC 电压,同时还保持输入电流与 VIN 同相。PFC 级对确保设计符合国际标准(包括 ISO、UNSCC、IEEE 和 CISPR)规定的各项功率因数规范十分必要。AC/DC + PFC 级的输出电压 (VOUT) 在理想情况下是稳定的,但由于组件的非理想化, AC/DC 输出端往往会出现电压纹波,这通常是寄生电感和电容ESR导致的,这种电压纹波也会出现在 LLC 变换器的输入端。
由于变换器的 VIN 和变压器固定增益带来的变数,LLC 谐振腔需要补偿 VIN 带来的变化以获得恒定的 VOUT。因此,如果 VIN 低于标称值,谐振腔可稍稍放大信号以产生最大谐振腔增益;如果 VIN 超过标称值,则最小谐振增益可确保变压器原边绕组处的电压稳定在标称值,以保持稳定的 VOUT。
标称谐振增益 (MG_NOM) 可以使用公式 (3) 来计算 (MG_NOM):
$$M_{G\_NOM} = \frac {V_{OUT} \times n} {V_{IN\_NOM}}$$
最大谐振增益 (MG_MAX) 可以使用公式 (4) 来计算:
$$M_{G\_MAX} = \frac {V_{OUT} \times n} {V_{IN\_MIN}}$$
最小谐振增益 (MG_MIN) 可以使用公式 (5) 来计算:
$$M_{G\_MIN} = \frac {V_{OUT} \times n} {V_{IN\_MAX}}$$
图 4 显示了 LLC 变换器的增益响应以及所需的最大、最小和标称谐振腔增益值。


LLC变换器负载
如第I部分所述,负载通过品质因数 (Q) 来表示,它影响谐振腔的最大增益以及峰值增益频率。谐振腔的峰值增益随负载的增加而降低。因此,即使在最坏的情况下(即负载最大时),满足最大增益要求也是非常重要的。
图 5 显示了 LLC 变换器对一系列负载的频率响应。

LLC变换器开关频率
负载对增益的影响是无法控制的,但可以通过改变 MOSFET 的开关频率 (fSW) 来保持电路增益。如图 5 所示,尽管负载会影响变换器的最大增益,但增加负载也会将频率 (fMG_MAX) 拉至更高水平,并产生最大增益。
图 6 显示了 LLC 谐振腔中一系列不同负载的最大增益点,以虚线绘制。这条线将增益响应分为两个不同的区域。在感性区域(右侧),发生零电压切换,并且增益随着频率的降低而增加,直至达到峰值增益频率。然后变换器进入容性区域(峰值增益频率的左侧),在该区域降低频率也会降低增益。感性区域允许通过频率变化进行稳定的增益控制。
继续阅读 >>>请复制下方链接进入MPS官网查看:
https://www.monolithicpower.cn/202210_10