欢迎光临散文网 会员登陆 & 注册

【标题速读】【Nnano】【2022年】【7-12月】

2023-03-07 17:08 作者:Rt_Cola  | 我要投稿

声明:本专栏主要对生命科学领域的一些期刊文章标题进行翻译,所有内容均由本人手工整理翻译。由于本人专业为生物分析相关,其他领域如果出现翻译错误请谅解。

The image represents the tunnelling injection of spin-polarized holes from a ferromagnetic material into a semiconducting material in a van der Waals heterostructure.

该图像表示自旋极化空穴从铁磁材料隧道注入到范德瓦尔斯异质结构中的半导体材料中。

1.Electric control of valley polarization in monolayer WSe2 using a van der Waals magnet.

利用范德瓦尔斯磁体对单层Se2的谷底极化进行电控。

2.Wavelike electronic energy transfer in donor–acceptor molecular systems through quantum coherence.

通过量子相干在供体-受体分子系统中的波浪式电子能量转移。

3.Atomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy.

原位透射电子显微镜揭示了单晶粒接触之间的原子尺度摩擦。

4.Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump.

对自主光动力超分子泵的耗散性非平衡操作的动力学和能量见解。

5.Nanostructured block copolymer muscles.

纳米结构的嵌段共聚物肌肉。

6.Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst.

在Ru分散的Cu纳米线电催化剂上将低浓度的硝酸盐源有效地转化为氨。

7.Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries.

通过低温电镜表征固体-电解质界面的结构和化学性质,导致高性能固态锂金属电池的出现。

8.Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy.

通过调节细胞的机械性能加强CRISPR/Cas基因编辑,用于癌症治疗。

9.A pyroptosis nanotuner for cancer therapy.

用于癌症治疗的热释光纳米调谐器。

用纳米粒子治疗败血症

Artistic representation of NAD(H)-loaded nanoparticles to replenish intracellular NAD(H) pool. NAD(H) are potential immunomodulators, but they cannot diffuse across the cell membrane, which hinders their clinical applications. Direct intracellular NAD(H) delivery enabled by nanoparticles can improve cellular energy supply and prevent inflammation-induced cell pyroptosis and apoptosis, thereby reducing fatality in severe sepsis by maintaining immune and vascular homeostasis.

载有NAD(H)的纳米粒子补充细胞内NAD(H)池的艺术表现。NAD(H)是潜在的免疫调节剂,但它们不能扩散穿过细胞膜,这阻碍了它们的临床应用。由纳米颗粒实现的直接细胞内NAD(H)递送可以改善细胞能量供应并防止炎症诱导的细胞焦亡和细胞凋亡,从而通过维持免疫和血管稳态降低严重脓毒症的死亡率。

1.Current-driven dynamics and ratchet effect of skyrmion bubbles in a ferrimagnetic insulator.

铁磁性绝缘体中天体气泡的电流驱动动力学和棘轮效应。

2.Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters.

基于石墨烯加热器的相变材料的超低能量可编程非挥发性硅光子学。

3.Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays.

可拉伸的色敏量子点纳米复合材料用于形状可调的复用光晶体管阵列。

4.High-yield solar-driven atmospheric water harvesting of metal–organic-framework-derived nanoporous carbon with fast-diffusion water channels.

具有快速扩散水通道的金属有机框架衍生的纳米多孔碳的高产太阳能驱动大气水收集。

5.Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos.

通过石墨烯生物阻抗纹身对动脉血压进行无袖带连续监测。

6.Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery.

纳米粒子单细胞多组学读数显示,细胞异质性影响脂质纳米粒子介导的信使RNA传递。

7.NAD(H)-loaded nanoparticles for efficient sepsis therapy via modulating immune and vascular homeostasis.

负载NAD(H)的纳米颗粒通过调节免疫和血管平衡实现高效的败血症治疗。

8.Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles.

基于图像引导的核苷酸纳米复合体装饰的超声微泡激活STING的癌症免疫治疗。

a, ncMBs are obtained by conjugating MBs with anti-CD11b antibodies and SpeDex and loading negatively charged cGAMP. b, On binding of ncMBs to APCs and under US exposure, cGAMP is delivered directly into the cytosol of the APCs by sonoporation to activate STING and downstream antitumour immunity, a process termed MUSIC. Credit a,b, Erin E. Moore. c, The lipid shell of the MB is partly composed of DSPE-PEG-maleimide, which was conjugated with thiolated SpeDex through a thiol–maleimide coupling reaction. d, Coulter Counter measurements of SpeDex-anti-CD11b MBs show a size distribution of 1–10 μm, with a mean size of 2.6 μm. e,f, A fluorescent analogue of cGAMP (DY547-c-diGMP) was used to verify binding to cMBs (forming ncMBs). Flow cytometry (e) and fluorescence microscopy (f) confirmed binding of the fluorescent analogue to all ncMBs. Scale bar, 50 μm. g, DiD-labelled cMBs were added to EO771 murine breast cancer cells and THP-1 human macrophages to confirm CD11b-specific targeting of cMBs. Confocal microscopy confirmed the binding of cMBs to THP-1 cells. h, Fluorescence microscopy of BMDMs after sonoporation with DY547-c-diGMP-loaded ncMBs indicates cytosolic delivery of the cyclic dinucleotide into all cells. g,h, Scale bar, 100 μm. i, Intensity quantification of DY547-c-diGMP uptake in BMDMs. The data represent mean ± s.d. with n = 3 biologically independent samples. All data are shown as representative from at least three independent experiments (d–i), and were analysed by one-way analysis of variance (ANOVA) with Tukey’s multiple comparisons test (i).
a, ncMBs是通过将MBs与抗CD11b抗体和SpeDex结合并加载带负电的cGAMP获得的。b, 在 ncMBs与APCs的结合和在超声暴露下,cGAMP通过声孔作用直接递送到APCs的胞质溶胶中以激活STING和下游抗肿瘤免疫,这一过程称为MUSIC。c, MB的脂质壳部分由DSPE-PEG-马来酰亚胺组成,它通过硫醇-马来酰亚胺偶联反应与硫醇化SpeDex结合。d, SpeDex-anti-CD11b MB的库尔特计数器测量显示尺寸分布为 1-10μm,平均尺寸为2.6μm。e、f, cGAMP 的荧光类似物(DY547-c-diGMP)用于验证与cMB的结合(形成ncMB)。流式细胞术(e)和荧光显微镜(f)证实了荧光类似物与所有ncMB的结合。比例尺,50μm。g,将DiD标记的cMB添加到EO771小鼠乳腺癌细胞和THP-1人巨噬细胞中,以确认cMB的CD11b特异性靶向。共聚焦显微镜证实了cMB与THP-1细胞的结合。h,用装载DY547-c-diGMP的ncMBs声孔化后BMDMs的荧光显微术表明环状二核苷酸进入所有细胞的细胞溶质递送。g,h,比例尺,100μm。i,BMDM 中DY547-c-diGMP摄取的强度量化。

Mapping RNA modifications with nanopore

用纳米孔绘制RNA修饰

This artistic representation depicts direct single molecule identification of major RNA epigenetic modifications using a phenylboronic acid modified Mycobacterium smegmatis porin A nanopore. This highly engineered nanopore demonstrates an outstanding resolution, suitable for sensing of a large variety of nucleoside or nucleotide derivatives simultaneously.

这种艺术表现描绘了使用苯硼酸修饰的耻垢分枝杆菌孔蛋白A纳米孔直接单分子鉴定主要RNA表观遗传修饰。这种高度工程化的纳米孔具有出色的分辨率,适用于同时检测多种核苷或核苷酸衍生物。

1.A tunable bilayer Hubbard model in twisted WSe2.

扭曲的WSe2中可调整的双层Hubbard模型。

2.Doping-driven topological polaritons in graphene/α-MoO3 heterostructures.

石墨烯/α-MoO3异质结构中掺杂驱动的拓扑极子。

3.Engineering nanoscale hypersonic phonon transport.

工程化的纳米级高超声速声子传输。

4.Direct patterning of colloidal quantum dots with adaptable dual-ligand surface.

具有适应性的双配体表面的胶体量子点的直接图案化。

5.Improving Li-ion interfacial transport in hybrid solid electrolytes.

改善混合固体电解质中锂离子的界面传输。

6.Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions.

石墨烯-纳米袋包覆的铂金钴纳米催化剂在苛刻的超低铂金负载条件下用于高度持久的燃料电池运行。

7.Identification of nucleoside monophosphates and their epigenetic modifications using an engineered nanopore.

利用工程纳米孔识别核苷单磷酸酯及其表观遗传修饰。

8.Multiplexed reverse-transcriptase quantitative polymerase chain reaction using plasmonic nanoparticles for point-of-care COVID-19 diagnosis.

利用等离子体纳米粒子进行多重反转录酶定量聚合酶链反应,用于COVID-19的医疗点诊断。

9.A nanomaterial targeting the spike protein captures SARS-CoV-2 variants and promotes viral elimination.

一种针对穗状蛋白的纳米材料可以捕获SARS-CoV-2变体并促进病毒的消除。

10.Nanomedicine platform for targeting activated neutrophils and neutrophil–platelet complexes using an α1-antitrypsin-derived peptide motif.

利用α1-抗胰蛋白酶衍生的肽图案靶向活化中性粒细胞和中性粒细胞-血小板复合物的纳米医学平台。

11.Remotely controlled near-infrared-triggered photothermal treatment of brain tumours in freely behaving mice using gold nanostars.

利用金纳米星对自由行为的小鼠进行远程控制的近红外触发的光热治疗脑肿瘤。

活着的光伏

Artificial nanomaterials, such as carbon nanotubes, can enhance living cells’ natural capabilities or even impart them with artificial properties unfounded in nature, which are inherited when cells divide. This artistic representation depicts a filament of cyanobacteria cells from Nostoc sp. The nanobionic cells, shown in purple, contain nanotubes that allow them to emit a powerful electric current, shown at the forefront of the image. The nanobionic cells can be tracked over several generations through near-infrared imaging.

人造纳米材料,如碳纳米管,可以增强活细胞的自然能力,甚至赋予它们在自然界中毫无根据的人工特性,这些特性在细胞分裂时会遗传。这幅艺术作品描绘了一条来自Nostoc sp.的蓝藻细胞细丝。以紫色显示的纳米仿生细胞包含纳米管,使它们能够发出强大的电流,如图像的最前面所示。纳米仿生细胞可以通过近红外成像追踪数代。

1.Three-dimensional racetrack memory devices designed from freestanding magnetic heterostructures.

由独立的磁性异质结构设计的三维赛道记忆装置。

2.A single hole spin with enhanced coherence in natural silicon.

天然硅中具有增强相干性的单孔自旋。

3.Quenching the bandgap of two-dimensional semiconductors with a perpendicular electric field.

用垂直电场淬灭二维半导体的带隙。

4.Bipolar thermoelectric Josephson engine.

双极热电约瑟夫森引擎。

5.Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride.

使用二维六方氮化硼的可磁调和稳定的深紫外双折射光学器件。

6.Metasurface optofluidics for dynamic control of light fields.

用于动态控制光场的元表面光流体技术。

7.Nanophotonic control of thermal emission under extreme temperatures in air.

空气中极端温度下的热发射的纳米光子控制。

8.Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics.

蓝藻中的碳纳米管吸收用于近红外成像和增强活体光伏的生物发电。

9.Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs.

纳米酶催化的CRISPR检测,用于非编码RNA的无预扩增检测。

Schematic of the combination of a Cas-based reaction with a NLISA proposed in this study. Target RNA is mixed with the gRNA–Cas13 complex and triggers collateral cleavage of reporter RNA. Subsequently, the mixture is added to an immunoassay plate precoated with anti-FAM. The unbound reporter RNA is washed away, and the nanozymes are added to form a complex through the bound reporter RNA. Finally, the substrate is added for colour development.

基于Cas的反应与本研究中提出的NLISA结合的示意图。目标 RNA与gRNA–Cas13复合物混合并触发报告RNA的侧裂。随后,将混合物添加到预涂有抗-FAM的免疫测定板中。未结合的报告RNA被洗掉,加入纳米酶通过结合的报告RNA形成复合物。最后加入底物显色。
Graphene percolation for stronger artificial muscles

石墨烯渗滤用于更强壮的人造肌肉

The image depicts a human muscle-like bundle of fibers made of exfoliated graphene in liquid crystal elastomers exhibiting strong photo-thermal actuation and enhanced mechanical properties.

该图像描绘了由液晶弹性体中的剥离石墨烯制成的类人肌肉纤维束,表现出强烈的光热驱动和增强的机械性能。

1.Local and global energy barriers for chiral domain walls in synthetic antiferromagnet–ferromagnet lateral junctions.

合成反铁磁体-铁磁体横向结中手性域壁的局部和整体能量障碍。

2.Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry.

利用单原子逐层分析和超低能量二次离子质谱法鉴定碳化氧MXenes和MAX相。

3.Human-muscle-inspired single fibre actuator with reversible percolation.

具有可逆渗流的人类肌肉启发的单纤维致动器。

4.A general one-step plug-and-probe approach to top-gated transistors for rapidly probing delicate electronic materials.

用于快速探测精细电子材料的顶部门控晶体管的一般一步插拔式方法。

5.Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells.

高效单片过氧化物硅串联太阳能电池的纳米光学设计。

6.A reverse-selective ion exchange membrane for the selective transport of phosphates via an outer-sphere complexation–diffusion pathway.

一种通过外球复合-扩散途径选择性运输磷酸盐的反向选择离子交换膜。

Global CO2 removal using engineered nanoparticles

使用工程纳米颗粒去除全球二氧化碳

The cover image depicts a situation where engineered nanoparticles are used to improve the efficiency and durability of ocean fertilization for CO2 capture from the atmosphere. The generated biomass sinks to store carbon in the deep ocean for centuries.

封面图片描绘了一种情况,其中使用工程纳米粒子来提高海洋施肥的效率和持久性,以从大气中捕获二氧化碳。几个世纪以来,产生的生物质下沉以将碳储存在深海中。

1.Quantum Hall phase in graphene engineered by interfacial charge coupling.

石墨烯中通过界面电荷耦合设计的量子霍尔相。

2.Relation between interfacial shear and friction force in 2D materials.

二维材料的界面剪切力和摩擦力之间的关系。

3.A room-temperature polarization-sensitive CMOS terahertz camera based on quantum-dot-enhanced terahertz-to-visible photon upconversion.

基于量子点增强的太赫兹至可见光子上转换的室温偏振敏感CMOS太赫兹相机。

4.Hierarchically self-assembled homochiral helical microtoroids.

分层自组装的同源手性微晶体。

5.Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction.

反馈控制的水凝胶的静止振荡和耗散信号转导。

6.Selective targeting of visceral adiposity by polycation nanomedicine.

通过多聚物纳米医学选择性地靶向内脏脂肪。

7.Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration.

环状二AMP锌纳米颗粒通过内皮STING激活和肿瘤相关巨噬细胞再活化来靶向和抑制肿瘤。

8.Immunological conversion of solid tumours using a bispecific nanobioconjugate for cancer immunotherapy.

使用双特异性纳米生物结合物进行癌症免疫治疗的固体肿瘤的免疫转换。

【标题速读】【Nnano】【2022年】【7-12月】的评论 (共 条)

分享到微博请遵守国家法律