欢迎光临散文网 会员登陆 & 注册

就一有关数列 之结论证明

2021-07-25 18:58 作者:Mynasty  | 我要投稿

s1,s2为方程

c·x²+(d-a)x-b=0

的根


s1+s2=(a-d)/c

s1s2=-b/c

(ad-bc)

/(a-cs2)²

=(a²-ac(a-d)/c-c²·b/c)

/(a-cs2)²

=(a²-ac(s1+s2)+c²·s1s2)

/(a-cs2)²

=(a-cs1)(a-cs2)/(a-cs2)²

=(a-cs1)/(a-cs2)


c·s2²+(d-a)s2-b=0

b-s2d=-as2+s2²c

(b-s2d)/(a-s2c)

=-s2


a(n+1)

=(a·an+b)/(c·an+d)

a(n+1)-s2

=((a-s2c)an+(b-s2d))/(c·an+d)

1/(a(n+1)-s2)

=(c·an+d)

/((a-s2c)an+(b-s2d))

1/(a(n+1)-s2)

=(c·an+d)/(a-s2c)

/(an+(b-s2d)/(a-s2c))

1/(a(n+1)-s2)

=(c/(a-s2c)(an+(b-s2d)/(a-s2c))

-c(b-s2d)/(a-s2c)²

+d(a-s2c)/(a-s2c)²)

/(an+(b-s2d)/(a-s2c))

1/(a(n+1)-s2)

=(ad-bc)/(a-s2c)²

/(an+(b-s2d)/(a-s2c))

+c/(a-s2c)

1/(a(n+1)-s2)

=(a-cs1)/(a-cs2)

/(an-s2)

+c/(a-s2c)


若s1=s2

即(a-cs1)/(a-cs2)=1

1/(a(n+1)-s1)

=1/(an-s1)+c/(a-cs1)

1/(a(n+1)-s1)-1/(an-s1)

=c/(a-cs1)

{1/(an-s1)}

为公差为

c/(a-cs1)

的等差数列


若s1≠s2

1/(a(n+1)-s2)

=(a-cs1)/(a-cs2)

/(an-s2)

+c/(a-s2c)

即1/(a(n+1)-s2)

=((a-cs1)/(a-cs2)/(an-s2)

+(((a-cs1)-(a-cs2))/(a-cs2))/(s2-s1))

即1/(a(n+1)-s2)+1/(s2-s1)

=((a-cs1)/(a-cs2)/(an-s2)

+(a-cs1)/(a-cs2)/(s2-s1))

即1/(a(n+1)-s2)+1/(s2-s1)

=(a-cs1)/(a-cs2)

(1/(an-s2)+1/(s2-s1))

即1/(a(n+1)-s2)+1/(s2-s1)

/(1/(an-s2)+1/(s2-s1))

=(a-cs1)/(a-cs2)

即{1/(an-s2)+1/(s2-s1)}

即{(s2-s1)/(an-s2)+1}

即{(an-s2+s2-s1)/(an-s2)}

即{(an-s1)/(an-s2)}

为公比为

(a-cs1)/(a-cs2)

的等比数列


得证

就一有关数列 之结论证明的评论 (共 条)

分享到微博请遵守国家法律