欢迎光临散文网 会员登陆 & 注册

就一有关抛物线滚动的焦点轨迹方程的求解

2022-07-21 21:46 作者:现代微积分  | 我要投稿

原视频:BV1k3411C73Y

一、抛物线沿x轴滚动

第一个思路是变换参考系:

若运动过程中抛物线为参考系,那么地面所在直线就是抛物线上的一点切线,这时可以设切点坐标(参数方程)快速写出切线的运动表达式,然后再用伽利略变换(参考系变换)将参考系变为直线即可

但目前我的知识储备还不够,因此尚未能用此法写出解析,先在此留下一个给自己的疑问吧,以后学会了再来写此法的解析。若网友们感兴趣也可帮助写此法解析[doge].

但我们仍能借助上图,下面介绍个人所想到的证法:

设抛物线方程为:x%5E2%3D2py,即y%3D%5Cfrac%7B1%7D%7B2p%7Dx%5E2,焦点坐标为:(0%2C%5Cfrac%7Bp%7D%7B2%7D)

设曲线上一点坐标为:(m%2C%5Cfrac%7B1%7D%7B2p%7Dm%5E2)

该点关于抛物线的切线斜率为:y'_%7B%7Cx%3Dm%7D%3D%5Cfrac%7Bm%7D%7Bp%7D%20

则切线倾斜角为:%5Ctheta%20%3Darctan(%5Cfrac%7Bm%7D%7Bp%7D%20)


运用弧长公式求得由顶点到该点的曲线长度(即滚过的弧长)为:

l%3D%5Cint_%7B0%7D%5E%7Bm%7D%5Csqrt%7B1%2B(y')%5E2%7D%20dx%3D%5Cint_%7B0%7D%5E%7Bm%7D%5Csqrt%7B1%2B(%5Cfrac%7Bx%7D%7Bp%7D%20)%5E2%7D%20dx

则滚动过程中切点坐标为:(l%2C0)

再考虑到抛物线在滚动时发生了旋转,先将抛物线平移,使得切点(m%2C%5Cfrac%7B1%7D%7B2p%7Dm%5E2)平移至点(l%2C0)处,再绕着(l%2C0)旋转一定角度使得抛物线与x轴相切(且抛物线恒在x轴上方)

我们只需将抛物线做以上的变换即可。

而绕着非原点的旋转较难直接描述,需要先平移至原点再进行旋转变换最后再平移回,因此有了如下的步骤和解析。

1、将抛物线沿向量%5Cbegin%7Bbmatrix%7D%0A-m%5C%5C-%5Cfrac%7B1%7D%7B2p%7Dm%5E2%5Cend%7Bbmatrix%7D平移,使得切点平移至原点

此时焦点坐标平移至:(-m%2C%5Cfrac%7Bp%7D%7B2%7D-%5Cfrac%7Bm%5E2%7D%7B2p%7D)


二、将抛物线顺时针旋转θ角度,使得抛物线与x轴相切

取以原点为起点(-m%2C%5Cfrac%7Bp%7D%7B2%7D-%5Cfrac%7Bm%5E2%7D%7B2p%7D)为终点的向量,作顺时针的旋转变换得:

%5Cbegin%7Bbmatrix%7D%0Acos%5Ctheta%20%20%20%26%20sin%5Ctheta%20%5C%5C%0A%20-sin%5Ctheta%20%20%26cos%5Ctheta%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0A%20-m%5C%5C%5Cfrac%7Bp%7D%7B2%7D-%5Cfrac%7Bm%5E2%7D%7B2p%7D%0A%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A%20-mcos%5Ctheta%20%2B(%5Cfrac%7Bp%7D%7B2%7D-%5Cfrac%7Bm%5E2%7D%7B2p%7D)sin%5Ctheta%20%5C%5C%0Amsin%5Ctheta%20%2B(%5Cfrac%7Bp%7D%7B2%7D-%5Cfrac%7Bm%5E2%7D%7B2p%7D)cos%5Ctheta%20%0A%5Cend%7Bbmatrix%7D

此时焦点旋转至:(-mcos%5Ctheta%20%2B(%5Cfrac%7Bp%7D%7B2%7D-%5Cfrac%7Bm%5E2%7D%7B2p%7D)sin%5Ctheta%2Cmsin%5Ctheta%20%2B(%5Cfrac%7Bp%7D%7B2%7D-%5Cfrac%7Bm%5E2%7D%7B2p%7D)cos%5Ctheta)


3、将抛物线向右平移l个单位,使得切点平移至滚动时的切点,即得滚动后抛物线

此时焦点坐标平移至:

(-mcos%5Ctheta%20%2B(%5Cfrac%7Bp%7D%7B2%7D-%5Cfrac%7Bm%5E2%7D%7B2p%7D)sin%5Ctheta%2Bl%2Cmsin%5Ctheta%20%2B(%5Cfrac%7Bp%7D%7B2%7D-%5Cfrac%7Bm%5E2%7D%7B2p%7D)cos%5Ctheta)

上述即滚动时的交点坐标,下面再将l和θ用参数m表示即可


下面计算弧长l

l%3D%5Cint_%7B0%7D%5E%7Bm%7D%5Csqrt%7B1%2B(y')%5E2%7D%20dx%3D%5Cint_%7B0%7D%5E%7Bm%7D%5Csqrt%7B1%2B(%5Cfrac%7Bx%7D%7Bp%7D%20)%5E2%7D%20dx

t%3D%5Cfrac%7Bx%7D%7Bp%7D,原式%3Dp%5Cint_%7B0%7D%5E%7B%5Cfrac%7Bm%7D%7Bp%7D%20%7D%5Csqrt%7B1%2Bt%5E2%7Ddt


下面用双曲代换求解I%3D%5Cint%20%5Csqrt%7B1%2Bt%5E2%7Ddt

t%3Dsinhu,

I%3D%5Cint%20cosh%5E2udu%3D%5Cint%5Cfrac%7Bcosh2u%2B1%7D%7B2%7D%20du%3D%5Cfrac%7B1%7D%7B4%7Dsinh2u%2B%5Cfrac%7B1%7D%7B2%7Du%2BC

其中sinh2u%3D2sinhu%5Ccdot%20coshu%3D2sinhu%5Ccdot%20%5Csqrt%7B1%2Bsinh%5E2u%7D

u%3Darcsinht代回得:

I%3D%5Cfrac%7B1%7D%7B2%7D%20t%5Csqrt%7B1%2Bt%5E2%7D%2B%5Cfrac%7B1%7D%7B2%7Darcsinht%2BC


%5Cbegin%7Barray%7D%0A%5C%5Cl%3Dp(%5Cfrac%7B1%7D%7B2%7D%20t%5Csqrt%7B1%2Bt%5E2%7D%2B%5Cfrac%7B1%7D%7B2%7Darcsinht%7C%5E%7B%5Cfrac%7Bm%7D%7Bp%7D%7D_%7B0%7D)%0A%5C%5C%3D%5Cfrac%7Bm%7D%7B2%7D%20%5Csqrt%7B1%2B%5Cfrac%7Bm%5E2%7D%7Bp%5E2%7D%7D%20%2B%5Cfrac%7Bp%7D%7B2%7Darcsinh(%5Cfrac%7Bm%7D%7Bp%7D)%0A%5Cend%7Barray%7D%0A


再求出θ,其中%5Ctheta%20%3Darctan(%5Cfrac%7Bm%7D%7Bp%7D%20)

构造直角边为m,p的直角三角形求得:

sin%5Ctheta%20%3D%5Cfrac%7Bm%7D%7B%5Csqrt%7Bm%5E2%2Bp%5E2%7D%20%7D%20%2Ccos%5Ctheta%20%3D%5Cfrac%7Bp%7D%7B%5Csqrt%7Bm%5E2%2Bp%5E2%7D%20%7D%20


综上,滚动时焦点运动轨迹参数方程为:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0Ax%3D-m%5Cfrac%7Bp%7D%7B%5Csqrt%7Bm%5E2%2Bp%5E2%7D%20%7D%20%20%2B(%5Cfrac%7Bp%7D%7B2%7D-%5Cfrac%7Bm%5E2%7D%7B2p%7D)%5Cfrac%7Bm%7D%7B%5Csqrt%7Bm%5E2%2Bp%5E2%7D%20%7D%2B%5Cfrac%7Bm%7D%7B2%7D%20%5Csqrt%7B1%2B%5Cfrac%7Bm%5E2%7D%7Bp%5E2%7D%7D%20%2B%5Cfrac%7Bp%7D%7B2%7Darcsinh(%5Cfrac%7Bm%7D%7Bp%7D)%0A%5C%5C%0Ay%3Dm%5Cfrac%7Bm%7D%7B%5Csqrt%7Bm%5E2%2Bp%5E2%7D%20%7D%20%2B(%5Cfrac%7Bp%7D%7B2%7D-%5Cfrac%7Bm%5E2%7D%7B2p%7D)%5Cfrac%7Bp%7D%7B%5Csqrt%7Bm%5E2%2Bp%5E2%7D%20%7D%20%0A%0A%5Cend%7Bmatrix%7D%5Cright.%20

化简得:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0Ax%3D%5Cfrac%7Bp%7D%7B2%7Darcsinh(%5Cfrac%7Bm%7D%7Bp%7D)%E2%91%A0%0A%5C%5C%0Ay%3D%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7Bm%5E2%2Bp%5E2%7D%20%E2%91%A1%0A%0A%5Cend%7Bmatrix%7D%5Cright.%20,其中m为参数

由①得,m%3Dpsinh(%5Cfrac%7B2%7D%7Bp%7D%20x),代入②式消参得:

y%3D%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7Bp%5E2sinh%5E2(%5Cfrac%7B2%7D%7Bp%7D%20x)%2Bp%5E2%7D%20%3D%5Cfrac%7Bp%7D%7B2%7D%20cosh(%5Cfrac%7B2%7D%7Bp%7Dx%20)

该曲线为双曲余弦函数,即运动轨迹为悬链线


二、抛物线在相同的抛物线上滚动(这个稍微简单些)

由于两抛物线大小和形状相同,且动抛物线由顶点开始沿定抛物线滚动,则滚过的路径与此刻切点到定抛物线顶点的弧长相等,也即动抛物线和定抛物线关于切点A处的切线轴对称(如上图所示)

因此求出每一时刻定抛物线焦点关于切点A切线的对称点即动抛物线的焦点坐标

设定抛物线方程为:x%5E2%3D-2py,即y%3D-%5Cfrac%7B1%7D%7B2p%7Dx%5E2,焦点坐标为:(0%2C-%5Cfrac%7Bp%7D%7B2%7D)

设A坐标为:(m%2C-%5Cfrac%7B1%7D%7B2p%7Dm%5E2)

A点关于抛物线的切线方程为:y%2B%5Cfrac%7B1%7D%7B2p%7Dm%5E2%3D-%5Cfrac%7Bm%7D%7Bp%7D(x-m)

化为直线一般方程,即%5Cfrac%7Bm%7D%7Bp%7Dx%2By%3D%5Cfrac%7Bm%5E2%7D%7B2p%7D

过定抛物线焦点作该切线垂线,方程为:x-%5Cfrac%7Bm%7D%7Bp%7Dy%3D%5Cfrac%7Bm%7D%7B2%7D

联立%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0A%20%5Cfrac%7Bm%7D%7Bp%7Dx%2By%3D%5Cfrac%7Bm%5E2%7D%7B2p%7D%5C%5Cx-%5Cfrac%7Bm%7D%7Bp%7Dy%3D%5Cfrac%7Bm%7D%7B2%7D%0A%5Cend%7Bmatrix%7D%5Cright.%20,解得:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0Ax%3D%5Cfrac%7Bm%7D%7B2%7D%5C%5Cy%3D0%0A%5Cend%7Bmatrix%7D%5Cright.%20

即动抛物线焦点坐标为:(2%5Ccdot%20%5Cfrac%7Bm%7D%7B2%7D-0%2C2%5Ccdot0%2B%5Cfrac%7Bp%7D%7B2%7D%20),即(m%2C%5Cfrac%7Bp%7D%7B2%7D%20)

故动抛物线焦点在定抛物线的准线y%3D%5Cfrac%7Bp%7D%7B2%7D上运动


下面再用相关点法求取动抛物线的准线方程

即求定抛物线准线关于切线的对称直线的方程

设动抛物线准线方程上一点为(x₀,y₀)

过该点作切线的垂线,方程为:x-%5Cfrac%7Bm%7D%7Bp%7Dy%3Dx_0-%5Cfrac%7Bm%7D%7Bp%7Dy_0

联立%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0A%20%5Cfrac%7Bm%7D%7Bp%7Dx%2By%3D%5Cfrac%7Bm%5E2%7D%7B2p%7D%5C%5Cx-%5Cfrac%7Bm%7D%7Bp%7Dy%3Dx_0-%5Cfrac%7Bm%7D%7Bp%7Dy_0%0A%5Cend%7Bmatrix%7D%5Cright.%20

解得:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0Ax%3D%5Cfrac%7B%5Cfrac%7Bm%5E2%7D%7B2%7D%2Bp%5E2x_0-mpy_0%20%7D%7Bm%5E2%2Bp%5E2%7D%20%5C%5C%0Ay%3D%5Cfrac%7B%5Cfrac%7Bm%5E2%7D%7B2%7Dp%2Bm%5E2y_0-mpx_0%20%7D%7Bm%5E2%2Bp%5E2%7D%0A%5Cend%7Bmatrix%7D%5Cright.%20

则(x₀,y₀)关于切线对称点坐标为:

(%5Cfrac%7Bm%5E2%2B2p%5E2x_0-2mpy_0%20%7D%7Bm%5E2%2Bp%5E2%7D-x_0%2C%5Cfrac%7Bm%5E2p%2B2m%5E2y_0-2mpx_0%20%7D%7Bm%5E2%2Bp%5E2%7D-y_0)

该点位于定抛物线准线y%3D%5Cfrac%7Bp%7D%7B2%7D上,则有

%5Cfrac%7Bm%5E2p%2B2m%5E2y_0-2mpx_0%20%7D%7Bm%5E2%2Bp%5E2%7D-y_0%3D%5Cfrac%7Bp%7D%7B2%7D%20

∴动抛物线准线方程为:

2mpx%2B(p%5E2-m%5E2)y-%5Cfrac%7B1%7D%7B2%7Dm%5E2p%2B%5Cfrac%7Bp%5E3%7D%7B2%7D%3D0%20%20

化为:m%5E2(-y-%5Cfrac%7B1%7D%7B2%7Dp)%2B2pxm%2Bp%5E2y%2B%5Cfrac%7Bp%5E3%7D%7B2%7D%3D0

求取直线所过定点,则x,y值与变量m无关,则需满足m的各次项前系数均为0:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0A%20y-%5Cfrac%7B1%7D%7B2%7Dp%3D0%20%5C%5C2px%3D0%0A%5C%5Cp%5E2y%2B%5Cfrac%7Bp%5E3%7D%7B2%7D%3D0%20%0A%5Cend%7Bmatrix%7D%5Cright.%20,解得:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0Ax%3D0%5C%5Cy%3D-%5Cfrac%7Bp%7D%7B2%7D%20%0A%5Cend%7Bmatrix%7D%5Cright.%20

∴动抛物线准线恒过定抛物线的焦点(0%2C-%5Cfrac%7Bp%7D%7B2%7D)


就一有关抛物线滚动的焦点轨迹方程的求解的评论 (共 条)

分享到微博请遵守国家法律